Displaying publications 61 - 62 of 62 in total

Abstract:
Sort:
  1. Bhalla R, Narasimhan K, Swarup S
    Plant Cell Rep, 2005 Dec;24(10):562-71.
    PMID: 16220342
    A natural shift is taking place in the approaches being adopted by plant scientists in response to the accessibility of systems-based technology platforms. Metabolomics is one such field, which involves a comprehensive non-biased analysis of metabolites in a given cell at a specific time. This review briefly introduces the emerging field and a range of analytical techniques that are most useful in metabolomics when combined with computational approaches in data analyses. Using cases from Arabidopsis and other selected plant systems, this review highlights how information can be integrated from metabolomics and other functional genomics platforms to obtain a global picture of plant cellular responses. We discuss how metabolomics is enabling large-scale and parallel interrogation of cell states under different stages of development and defined environmental conditions to uncover novel interactions among various pathways. Finally, we discuss selected applications of metabolomics.
    Matched MeSH terms: Gene Expression Profiling/methods
  2. Zainal Z, Sajari R, Ismail I
    J. Biochem. Mol. Biol. Biophys., 2002 Dec;6(6):415-9.
    PMID: 14972797
    Ornithine decarboxylase (ODC) is an enzyme of one of the two pathways of putrescine biosynthesis in plants. The genes encoding ODC have previously been cloned from Datura stramonium and human. Using differential screening, we isolated ODC cDNA clone from a cDNA library of ripening Capsicum annuum fruit. The cDNA clone designated CUKM10 contains an insert of 1523 bp. The longest open reading frame potentially encodes a peptide of 345 amino acids with an estimated molecular mass of 47 kDa and exhibit striking similarity to other ODCs. Expression analysis showed that the capODC hybridised to a single transcript with a size of 1.7 kb. The capODC transcript was first observed in early ripening and increased steadily until it reached fully ripening stage. From the observation it is suggested that capODC is developmentally regulated especially during later stage of ripening.
    Matched MeSH terms: Gene Expression Profiling/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links