Displaying publications 81 - 100 of 163 in total

Abstract:
Sort:
  1. Mak JW, Cheong WH, Yen PK, Lim PK, Chan WC
    Acta Trop, 1982 Sep;39(3):237-45.
    PMID: 6128892
    The dynamics of the transmission of subperiodic Brugia malayi in a typical endemic area in Malaysia was studied over a period of 4 years. Mass chemotherapeutic control with diethylcarbamazine citrate was found to be inefficient, new cases being detected even after the fifth treatment cycle of 6 mg/kg X 6 days per cycle. This is in marked contrast to the situation in periodic b. malayi areas where mass treatment efficiently controlled the infection. The disparity in results in these two areas is attributed to zoonotic transmission of subperiodic B. malayi from non-human primates where a mean infection rate of 76.3% was found.
  2. Low VL, Wong ML, Liew JWK, Pramasivan S, Jeyaprakasam NK, Vythilingam I
    Acta Trop, 2020 Jan;201:105207.
    PMID: 31586449 DOI: 10.1016/j.actatropica.2019.105207
    A gynandromorph of Culex sitiens Wiedemann (Diptera: Culicidae) was attracted to a human during a mosquito surveillance programme conducted in Kuala Lipis, Pahang, Malaysia on July 20, 2019. Gynandromorphism was observed in antennae, maxillary palps, legs and wings of the specimen, with distinct male characters on the left and female characters on the right, though the left maxillary palp is slightly shorter than the proboscis of a typical male. The abdomen, however, displays well-developed male genitalia. This study represents the first report of oblique gynandromorphism in Cx. sitiens, one of the vectors of Japanese encephalitis in Asia.
  3. Low VL, Tan TK, Khoo JJ, Lim FS, AbuBakar S
    Acta Trop, 2020 Feb;202:105282.
    PMID: 31778642 DOI: 10.1016/j.actatropica.2019.105282
    Rickettsioses are emerging, and re-emerging diseases caused by obligate intracellular arthropod-borne bacteria that infect humans and animals worldwide. Various rickettsiae such as Orientia, Rickettsia, Anaplasma and Ehrlichia have been circulated in companion, domesticated and wild animals through bites of infected ticks, fleas, lice or mites. This review summarizes the infections of rickettsiae, including the newly discovered regional species Rickettsia thailandii, Candidatus Rickettsia sepangensis, Candidatus Rickettsia johorensis, Candidatus Rickettsia laoensis, Candidatus Rickettsia mahosotii, Candidatus Rickettsia khammouanensis, Candidatus Anaplasma pangolinii, and other novel genotypes in vectors, humans and animals in Southeast Asia. Issues on some unidentified rickettsiae that elicit immune responses and production of antibodies that are cross-reactive with the antigens used are discussed. Knowledge gaps which required attention are also identified in this review.
  4. Low GK, Ogston SA, Yong MH, Gan SC, Chee HY
    Acta Trop, 2018 Jun;182:237-245.
    PMID: 29545158 DOI: 10.1016/j.actatropica.2018.03.014
    BACKGROUND: Since the introduction of 2009 WHO dengue case classification, no literature was found regarding its effect on dengue death. This study was to evaluate the effect of 2009 WHO dengue case classification towards dengue case fatality rate.

    METHODS: Various databases were used to search relevant articles since 1995. Studies included were cohort and cross-sectional studies, all patients with dengue infection and must report the number of death or case fatality rate. The Joanna Briggs Institute appraisal checklist was used to evaluate the risk of bias of the full-texts. The studies were grouped according to the classification adopted: WHO 1997 and WHO 2009. Meta-regression was employed using a logistic transformation (log-odds) of the case fatality rate. The result of the meta-regression was the adjusted case fatality rate and odds ratio on the explanatory variables.

    RESULTS: A total of 77 studies were included in the meta-regression analysis. The case fatality rate for all studies combined was 1.14% with 95% confidence interval (CI) of 0.82-1.58%. The combined (unadjusted) case fatality rate for 69 studies which adopted WHO 1997 dengue case classification was 1.09% with 95% CI of 0.77-1.55%; and for eight studies with WHO 2009 was 1.62% with 95% CI of 0.64-4.02%. The unadjusted and adjusted odds ratio of case fatality using WHO 2009 dengue case classification was 1.49 (95% CI: 0.52, 4.24) and 0.83 (95% CI: 0.26, 2.63) respectively, compared to WHO 1997 dengue case classification. There was an apparent increase in trend of case fatality rate from the year 1992-2016. Neither was statistically significant.

    CONCLUSIONS: The WHO 2009 dengue case classification might have no effect towards the case fatality rate although the adjusted results indicated a lower case fatality rate. Future studies are required for an update in the meta-regression analysis to confirm the findings.

  5. Lim PK, Yamasaki H, Mak JW, Wong SF, Chong CW, Yap IK, et al.
    Acta Trop, 2015 Aug;148:32-7.
    PMID: 25910623 DOI: 10.1016/j.actatropica.2015.04.011
    Human toxocariasis which is caused mainly by the larvae of Toxocara canis and Toxocara cati, is a worldwide zoonotic disease that can be a potentially serious human infection. The enzyme-linked immunosorbent assay (ELISA) using T. canis excretory-secretory (TES) antigens harvested from T. canis larvae is currently the serological test for confirming toxocariasis. An alternative to producing large amounts of Toxocara TES and improved diagnosis for toxocariasis is through the development of highly specific recombinant antigens such as the T. canis second stage larva excretory-secretory 30 kDa protein (recTES-30). The aim of this study was to evaluate the sensitivity and specificity of a rapid diagnostic kit (RDT, named as iToxocara kit) in comparison to recTES-30 ELISA in Serendah Orang Asli village in Selangor, Malaysia. A total of 133 subjects were included in the study. The overall prevalence rates by ELISA and RDT were 29.3% and 33.1%, respectively, with more positive cases detected in males than females. However, no association was found between toxocariasis and gender or age. The percentage sensitivity, specificity, positive predictive value and negative predictive value of RDT were 85.7%, 90.1%, 80% and 93.2%, respectively. The prevalence for toxocariasis in this population using both ELISA and RDT was 27.1% (36/133) and the K-concordance test suggested good agreement of the two tests with a Cohen's kappa of 0.722, P<0.01. In addition, the followed-up Spearman rank correlation showed a moderately high correlation at R=0.704 and P<0.01. In conclusion, the RDT kit was faster and easier to use than an ELISA and is useful for the laboratory diagnosis of hospitalized cases of toxocariasis.
  6. Lim ASS, Tan KY, Tan CH
    Acta Trop, 2024 Feb;250:107099.
    PMID: 38097152 DOI: 10.1016/j.actatropica.2023.107099
    Snakebite envenoming (SBE) is a priority Neglected Tropical Disease listed by the World Health Organization. South Asia is heavily affected, and virtually all countries in the region import polyvalent antivenom products from India for clinical use. The imported antivenoms, however, have suboptimal effectiveness due to geographical venom variation. Recently, a domestic bivalent product, named Pakistani Viper Antivenom (PVAV) has been developed specifically for Pakistani vipers, Echis carinatus sochureki and Daboia russelii. As a bivalent viperid antivenom, it is unknown yet if PVAV exhibits higher immunological binding and neutralization activities against viper venoms from distant locales compared with polyvalent antivenoms manufactured in India. This study thus examined the preclinical efficacy of PVAV against venoms of Western Russell's Vipers and Saw-scaled Viper subspecies from selected locales in the Indian subcontinent. PVAV generally outperformed the commonly used VINS polyvalent antivenom (VPAV, manufactured in India) in binding toward venoms, and showed superior or comparable neutralization efficacy against the venom procoagulant and hemorrhagic effects of Saw-scaled Vipers as well as Russell's Vipers from Pakistan and Sri Lanka. Based on normalized potency values, PVAV is far more potent than VPAV in neutralizing the lethality of all viper venoms, except that of the Indian Russell's Viper. The study shows conserved antigenicity of toxins responsible for major toxicity across these viperid venoms, and suggests the feasible production of a viper-specific antivenom with higher potency and broader geographical utility for the region.
  7. Liew JWK, Selvarajoo S, Phang WK, Mah Hassan M, Redzuan MS, Selva Kumar S, et al.
    Acta Trop, 2021 Apr;216:105829.
    PMID: 33465350 DOI: 10.1016/j.actatropica.2021.105829
    The aim of this study is to investigate the feasibility and outcomes of using Gravid Oviposition Sticky (GOS) trap and dengue NS1 antigen tests for indoor and outdoor dengue/Aedes surveillance in the field. A one-year community-based study was carried out at Sungai Buloh Hospital Quarters, Selangor, Malaysia. GOS traps were first placed outdoors in three apartment blocks (Anggerik, Bunga Raya and Mawar). Beginning 29th week of the study, indoor traps were set in two apartment units on every floor in Anggerik. All female Aedes mosquitoes caught were tested for the presence of dengue NS1 antigen. Dengue seroprevalence and knowledge, attitude and practices on dengue prevention of the community and their reception to the surveillance approach were also assessed. Dengue-positive mosquitoes were detected at least 1 week before a dengue onset. More mosquitoes were caught indoors than outdoors in block Anggerik, but the total number of mosquitoes caught in all 3 blocks were similar. There was a significant difference in distribution of Ae. aegypti and Ae. albopictus between the 3 blocks. 66.1% and 3.4% of the community were positive for dengue IgG and IgM, respectively. Most respondents think that this surveillance method is Good (89%) and support its use nationwide. Dengue case ratio in the study apartment blocks decreased from year 2018 to 2019. This study demonstrated the practicality of performing proactive dengue/Aedes surveillance inside apartment units using the GOS traps. This surveillance method can be performed with immediate result output in the field.
  8. Leong PK, Tan CH, Sim SM, Fung SY, Sumana K, Sitprija V, et al.
    Acta Trop, 2014 Apr;132:7-14.
    PMID: 24384454 DOI: 10.1016/j.actatropica.2013.12.015
    Snake envenomation is a serious public health threat in many rural areas of Asia and Africa. Antivenom has hitherto been the definite treatment for snake envenomation. Owing to a lack of local production of specific antivenom, most countries in these regions fully depend on foreign supplies of antivenoms. Often, the effectiveness of the imported antivenoms against local medically important species has not been validated. This study aimed to assess cross-neutralizing capacity of a recently developed polyvalent antivenom, Hemato Polyvalent Snake Antivenom (HPAV), against venoms of a common viper and some pit vipers from Southeast Asia. Neutralisation assays showed that HPAV was able to effectively neutralize lethality of the common Southeast Asian viperid venoms examined (Calloselasma, Crytelytrops, Popeia, and Daboia sp.) except for Tropidolaemus wagleri venom. HPAV also effectively neutralized the procoagulant and hemorrhagic activities of all the venoms examined, corroboratively supporting the capability of HPAV in neutralizing viperid venoms which are principally hematoxic. The study also indicated that HPAV fully prevented the occurrence of hematuria and proteinuria in mice envenomed with Thai Daboia siamensis venom but was only partially effective against venoms of Myanmar D. siamensis. Thus, HPAV appears to be useful against its homologous venoms and venoms from Southeast Asian viperids including several medically important pit vipers belonging to the Trimeresurus complex. Nevertheless, the effectiveness of HPAV as a paraspecific antivenom for treatment of viperid envenomation in Southeast Asian region requires further assessment from future clinical trials.
  9. Leong PK, Fung SY, Tan CH, Sim SM, Tan NH
    Acta Trop, 2015 Sep;149:86-93.
    PMID: 26026717 DOI: 10.1016/j.actatropica.2015.05.020
    The low potency of cobra antivenom has been an area of concern in immunotherapy for cobra envenomation. This study sought to investigate factors limiting the neutralizing potency of cobra antivenom, using a murine model. We examined the immunological reactivity and neutralizing potency of a Thai polyvalent antivenom against the principal toxins of Naja sumatrana (Equatorial spitting cobra) venom and two related Asiatic cobra venom α-neurotoxins. The antivenom possesses moderate neutralizing potency against phospholipases A2 (P, potency of 0.98mg/mL) and moderately weak neutralizing potency against long-chain α-neurotoxins (0.26-0.42mg/mL) but was only weakly effective in neutralizing the short-chain α-neurotoxins and cardiotoxins (0.05-0.08mg/mL). The poor neutralizing potency of the antivenom on the low molecular mass short-chain neurotoxins and cardiotoxins is presumably the main limiting factor of the efficacy of the cobra antivenom. Our results also showed that phospholipase A2, which exhibited the highest ELISA reactivity and avidity, was most effectively neutralized, whereas N. sumatrana short-chain neurotoxin, which exhibited the lowest ELISA reactivity and avidity, was least effectively neutralized by the antivenom. These observations suggest that low immunoreactivity (low ELISA reactivity and avidity) is one of the reasons for poor neutralization of the cobra venom low molecular mass toxins. Nevertheless, the overall results show that there is a lack of congruence between the immunological reactivity of the toxins toward antivenom and the effectiveness of toxin neutralization by the antivenom, indicating that there are other factors that also contribute to the weak neutralization capacity of the antivenom. Several suggestions have been put forward to overcome the low efficacy of the cobra antivenom. The use of a 'proper-mix' formulation of cobra venoms as immunogen, whereby the immunogen mixture used for hyperimmunization contains a mix of various types of α-neurotoxins and cardiotoxins in sufficient amount, may also help to improve the efficacy and broaden the neutralization spectrum of the antivenom.
  10. Leong CS, Vythilingam I, Wong ML, Wan Sulaiman WY, Lau YL
    Acta Trop, 2018 Sep;185:115-126.
    PMID: 29758171 DOI: 10.1016/j.actatropica.2018.05.008
    The resistance status of Selangor Aedes aegypti (Linnaeus) larvae against four major groups of insecticides (i.e., organochlorines, carbamates, organophosphates and pyrethroids) was investigated. Aedes aegypti were susceptible against temephos (organophosphate), although resistance (RR50 = 0.21-2.64) may be developing. The insecticides susceptibility status of Ae. aegypti larvae were found heterogeneous among the different study sites. Results showed that Ae. aegypti larvae from Klang, Sabak Bernam and Sepang were susceptible against all insecticides tested. However, other study sites exhibited low to high resistance against all pyrethroids (RR50 = 1.19-32.16). Overall, the application of synergists ethacrynic acid, S.S.S.- tributylphosphorotrithioate and piperonyl butoxide increased the toxicity of insecticides investigated. However, the application failed to increase the mortality to susceptible level (>97%) for certain populations, therefore there are chances of alteration of target site resistance involved. Biochemical assays revealed that α-esterase, (Gombak, Kuala Langat, Kuala Selangor and Sabak Bernam strains) β-esterase (Klang and Sabak Bernam strains), acetylcholinesterase (Kuala Selangor and Sabak Bernam strains), glutathione-S-transferase (Kuala Selangor and Sabak Bernam strains) and mono-oxygenases (Gombak, Hulu Langat, Hulu Selangor and Kuala Langat strains) were elevated. Spearman rank-order correlation indicated a significant correlation between resistance ratios of: DDT and deltamethrin (r = 0.683, P = 0.042), cyfluthrin and deltamethrin (r = 0.867, P =0.002), cyflyuthrin and lambdacyhalothrin (r = 0.800, P =0.010), cyfluthrin and permethrin (r = 0.770, P =0.015) deltamethrin and permethrin (r = 0.803, P =0.088), propoxur and malathion (r = 0.867, P = 0.002), malathion and temephos (r = 0.800, P = 0.010), etofenprox and MFO enzyme (r = 0.667, P =0.050). The current study provides baseline information for vector control programs conducted by local authorities. The susceptibility status of Ae. aegypti should be monitored sporadically to ensure the effectiveness of current vector control strategy in Selangor.
  11. Lee SC, Ngui R, Tan TK, Roslan MA, Ithoi I, Mahdy MAK, et al.
    Acta Trop, 2017 Dec;176:349-354.
    PMID: 28859958 DOI: 10.1016/j.actatropica.2017.08.030
    The epidemiology of giardiasis in rural villages in Peninsular Malaysia was examined in the context of the One Health triad that encompasses humans, animals and environment (i.e. river water). A cross-sectional study was carried out among five rural communities in Malaysia to determine the prevalence of Giardia duodenalis in humans, animals and river water. Fecal samples collected from humans and animals were examined by light microscopy. Water was sampled from the rivers adjacent to the target communities and investigated for the occurrence of Giardia cysts. The isolated cysts were further genotyped targeting the glutamate dehydrogenase and triosephosphate isomerase genes. The overall prevalence of G. duodenalis was 6.7% (18/269) and 4.7% (8/169) among humans and animals, respectively. Giardia cysts (mean concentration range: 0.10-5.97 cysts/L) were also found in adjacent rivers at four out of the five villages examined. At Kemensah and Kuala Pangsun, Giardia cysts were isolated from humans [rate: 3.7% each (of 54 each)], animals [rates: 6.3% (of 62) and 11.3% (of 16), respectively] and river water [average concentration of 9 samples each: 0.83±0.81 and 5.97±7.00, respectively]. For both villages at Pos Piah and Paya Lebar, 12.2% (of 98) and 6.1% (of 33) of collected human samples were infected, respectively whilst none of the collected animals samples in these villages were found to be positive. The river water samples of these two villages were also contaminated (average concentration: 0.20±0.35 (of 9) and 0.10±0.19 (of 3), respectively). In conclusion, Giardia cysts were simultaneously observed in the human-animal-environment (i.e., river water) interfaces in at least two of five studied communities highlighting a vital need to improve understanding on the interplay of transmission dynamics, the role of infected humans and animals in contaminating the water sources and the role of water as a vehicle of disease transmission in these communities. Indeed, this study illustrates the One Health approach which is to recognize that the optimal health of humans are interconnected with the well-being of animals and their environment.
  12. Lee JM, Yek SH, Wilson RF, Rahman S
    Acta Trop, 2020 Dec;212:105683.
    PMID: 32888935 DOI: 10.1016/j.actatropica.2020.105683
    Understanding the diversity and dynamics of the microbiota within the mosquito holobiome is of great importance to apprehend how the microbiota modulates various complex processes and interactions. This study examined the bacterial composition of Aedes albopictus across land use type and mosquito sex in the state of Selangor, Malaysia using 16S rRNA sequencing. The bacterial community structure in mosquitoes was found to be influenced by land use type and mosquito sex, with the environment and mosquito diet respectively identified to be the most likely sources of microbes. We found that approximately 70% of the microbiota samples were dominated by Wolbachia and removing Wolbachia from analyses revealed the relatively even composition of the remaining bacterial microbiota. Furthermore, microbial interaction network analysis highlighted the prevalence of co-exclusionary patterns in all networks regardless of land use and mosquito sex, with Wolbachia exhibiting co-exclusionary interactions with other residential bacteria such as Xanthomonas, Xenophilus and Zymobacter.
  13. Lee HY, Loong SK, Ya'cob Z, Low VL, Teoh BT, Ahmad-Nasrah SN, et al.
    Acta Trop, 2021 Jul;219:105923.
    PMID: 33878305 DOI: 10.1016/j.actatropica.2021.105923
    Although the microbiome of blood-feeding insects serves an integral role in host physiology, both beneficial and pathogenic, little is known of the microbial community of black flies. An investigation, therefore, was undertaken to identify culturable bacteria from one of Malaysia's most common black flies, Simulium tani Takaoka and Davies, using 16S rDNA sequencing, and then evaluate the isolates for antibiotic resistance and virulence genes. A total of 20 isolates representing 11 bacterial species in four genera were found. Five isolates showed β-hemolysis on Columbia agar, and virulence genes were found in three of these isolates. Some degree of resistance to six of the 12 tested antibiotics was found among the isolates. The baseline data from this study suggest rich opportunities for comparative studies exploring the diversity and roles of the microbiome of S. tani and other Southeast Asian black flies.
  14. Lai MY, Lau YL
    Acta Trop, 2020 May 15;208:105511.
    PMID: 32422380 DOI: 10.1016/j.actatropica.2020.105511
    In this study, recombinase polymerase amplification (RPA) combined with SYBR Green I was developed for the detection of Plasmodium knowlesi. Positive samples were indicated with a green color while negative samples were orange. To increase the efficiency of amplification, an interval mixing step of samples after 3 to 6 min incubation was recommended. Different sets of reaction volumes from 6.25 to 50 µL were tested and the results indicated no differences in detection. RPA's combination with SYBR Green I is fast and easy to perform, hence this method is suitable for use in resource-limited settings.
  15. Lai MY, Ponnampalavanar SSS, Omar SFS, Lau YL
    Acta Trop, 2024 Mar;251:107120.
    PMID: 38199452 DOI: 10.1016/j.actatropica.2024.107120
    Combining the advantages of PCR and LAMP, we described a new technique, namely PCR-LAMP, for malaria diagnosis. The whole process of DNA amplification can be completed in 35 min. This hybrid amplification technique markedly improved the sensitivity of detection compared to the classic single PCR or LAMP assay alone. PCR-LAMP assay had a detection limit of 1 copy/µL for P. knowlesi and P. ovale, 0.1 copy/µL for P. vivax, P. falciparum and P. malariae, respectively. To facilitate the endpoint detection, xylenol orange was added. Positive samples were indicated in orange while negative reactions were violet. The inclusion of xylenol orange into the LAMP reaction mix significantly reduces the post-amplification workload. Without relying on the use of specific instruments, the color changes of the amplicons could be visualized directly through the naked eye. In conclusion, PCR-LAMP poses the potential to be developed as a new malaria molecular diagnosis tool.
  16. Kwak ML, Hitch AT, Borthwick SA, Low DHW, Markowsky G, McInnes D, et al.
    Acta Trop, 2023 Oct;246:106992.
    PMID: 37543183 DOI: 10.1016/j.actatropica.2023.106992
    The Asian rodent tick (Ixodes granulatus) occurs throughout much of Asia, it frequently bites humans, and zoonotic pathogens, such as Borrelia burgdorferi (sensu lato) and Rickettsia honei, have been detected within it. Unfortunately, the ecology of I. granulatus remains poorly known, including drivers of its abundance and the interaction ecology with its sylvatic hosts. To elucidate the ecology of this medically important species, the habitat preferences of I. granulatus were assessed in Singapore and Malaysia. Ixodes granulatus showed strong associations with old forest habitats, though across different age classes of old forest there was limited variation in abundance. Ixodes granulatus was absent from other habitats including young forest, scrubland, and parks/gardens. Within its sylvatic rodent hosts, a range of factors were found to be statistically significant predictors of I. granulatus load and/or infestation risk, including sex and body condition index. Male rodents were significantly more likely to be infested and to have higher loads than females, similarly, animals with a lower body condition index were significantly more likely to be infested. Proactive public health efforts targeted at preventing bites by this tick should carefully consider its ecology to minimise ecological overlap between humans and I. granulatus.
  17. Kumaran SK, Bakar MFA, Mohd-Padil H, Mat-Sharani S, Sakinah S, Poorani K, et al.
    Acta Trop, 2017 Dec;176:433-439.
    PMID: 28941729 DOI: 10.1016/j.actatropica.2017.09.011
    Leptospirosis is a widespread zoonotic disease caused by pathogenic Leptospira species (Leptospiraceae). LipL32 is an abundant lipoprotein from the outer membrane proteins (OMPs) group, highly conserved among pathogenic and intermediate Leptospira species. Several studies used LipL32 as a specific gene to identify the presence of leptospires. This research was aimed to study the characteristics of LipL32 protein gene code, to fill the knowledge gap concerning the most appropriate gene that can be used as antigen to detect the Leptospira. Here, we investigated the features of LipL32 in fourteen Leptospira pathogenic strains based on comparative analyses of their primary, secondary structures and 3D modeling using a bioinformatics approach. Furthermore, the physicochemical properties of LipL32 in different strains were studied, shedding light on the identity of signal peptides, as well as on the secondary and tertiary structure of the LipL32 protein, supported by 3D modelling assays. The results showed that the LipL32 gene was present in all the fourteen pathogenic Leptospira strains used in this study, with limited diversity in terms of sequence conservation, hydrophobic group, hydrophilic group and number of turns (random coil). Overall, these results add basic knowledge to the characteristics of LipL32 protein, contributing to the identification of potential antigen candidates in future research, in order to ensure prompt and reliable detection of pathogenic Leptospira species.
  18. Kumar K, Arshad SS, Selvarajah GT, Abu J, Toung OP, Abba Y, et al.
    Acta Trop, 2018 Sep;185:219-229.
    PMID: 29856986 DOI: 10.1016/j.actatropica.2018.05.017
    Japanese encephalitis (JE) is a vector-borne zoonotic disease caused by the Japanese encephalitis virus (JEV). It causes encephalitis in human and horses, and may lead to reproductive failure in sows. The first human encephalitis case in Malaya (now Malaysia) was reported during World War II in a British prison in 1942. Later, encephalitis was observed among race horses in Singapore. In 1951, the first JEV was isolated from the brain of an encephalitis patient. The true storyline of JE exposure among humans and animals has not been documented in Malaysia. In some places such as Sarawak, JEV has been isolated from mosquitoes before an outbreak in 1992. JE is an epidemic in Malaysia except Sarawak. There are four major outbreaks reported in Pulau Langkawi (1974), Penang (1988), Perak and Negeri Sembilan (1998-1999), and Sarawak (1992). JE is considered endemic only in Sarawak. Initially, both adults and children were victims of JE in Malaysia, however, according to the current reports; JE infection is only lethal to children in Malaysia. This paper describes a timeline of JE cases (background of each case) from first detection to current status, vaccination programs against JE, diagnostic methods used in hospitals and factors which may contribute to the transmission of JE among humans and animals in Malaysia.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links