Displaying publications 81 - 86 of 86 in total

Abstract:
Sort:
  1. Mustafa RA, Abdul Hamid A, Mohamed S, Bakar FA
    J Food Sci, 2010 Jan-Feb;75(1):C28-35.
    PMID: 20492146 DOI: 10.1111/j.1750-3841.2009.01401.x
    Free radical scavenging activity of 21 tropical plant extracts was evaluated using 1,1-diphenyl-2-picrylhydrazyl assay (DPPH). Total phenolic compounds and flavonoids were determined using Folin-Ciocalteu and HPLC, respectively. Results of the study revealed that all the plants tested exhibited excellent antioxidant activity with IC(50) in the range of 21.3 to 89.6 microg/mL. The most potent activity was demonstrated by Cosmos caudatus (21.3 microg/mL) and Piper betle (23.0 microg/mL) that are not significantly different than that of -tocopherol or BHA. L. inermis extract was found to consist of the highest concentration of phenolics, catechin, epicatechin, and naringenin. High content of quercetin, myricetin, and kaempferol were identified in Vitex negundo, Centella asiatica, and Sesbania grandiflora extracts, respectively. Luteolin and apigenin, on the other hand, were found in Premna cordifolia and Kaempferia galanga extracts. Strong correlation (R = 0.8613) between total phenolic compounds and total flavonoids (R = 0.8430) and that of antioxidant activity of the extracts were observed. The study revealed that phenolic, in particular flavonoids, may be the main contributors to the antioxidant activity exhibited by the plants.
  2. Alrosan M, Tan TC, Easa AM, Gammoh S, Alu'datt MH
    J Food Sci, 2021 Dec;86(12):5282-5294.
    PMID: 34796499 DOI: 10.1111/1750-3841.15974
    Poor solubility is a substantial factor that restricts the production of high value-added lentil proteins (LPs). In this study, whey protein isolates (WPIs), which have high solubility and are used in various food industries, were mixed with LPs at pH 12 to create LP-WPI protein complexes with improved water solubility properties using pH-recycling approach (maintained at pH 12.0 for 60 min and then readjusting to pH 7.0). LP-WPI protein complexes produced in this study have gained high surface charge, increased in the solubilization of protein complexes to ≈92%, as well as improved resistance against protein aggregation. The ratio of LPs to WPIs has a significant effect on the generation of unique tertiary and secondary protein structures based on the protein-protein interaction (PPI) technique via pH-recycling. The protein interaction between LPs and WPIs resulted in alteration on the surface morphology of the produced protein complexes. This study showed that electrostatic interaction, hydrophobic force, and hydrogen bond appear as major molecular forces in this PPI. The efficacy of the pH-recycling method used in this research indicates that this approach could be a robust approach to enhance the functional properties of food proteins. PRACTICAL APPLICATION: The pH-recycling technique is a proven technique for protein complexation in creating novel protein complexes with improved functional properties. Even though lentils are a rich source of plant-based protein, its utilization by food industries is restricted due to the poor water solubility of lentil proteins (LPs). However, by using complexing lentil proteins with whey protein isolates (WPIs), that is, LP-WPI protein complex, was developed. The water solubility of LP-WPI protein complex was significantly higher than LPs, up to approximately 92%. In addition, this could improve the utilization of lentil seeds in food application as an alternative for animal-based proteins.
  3. Nehdi IA, Sbihi HM, Tan CP, Rashid U, Al-Resayes SI
    J Food Sci, 2018 Mar;83(3):624-630.
    PMID: 29377104 DOI: 10.1111/1750-3841.14033
    This investigation aimed to evaluate the chemical composition and physicochemical properties of seed oils from 6 date palm (Phoenix. dactylifera L.) cultivars (Barhi, Khalas, Manifi, Rezeiz, Sulaj, and Sukkari) growing in Saudi Arabia and to compare them with conventional palm olein. The mean oil content of the seeds was about 7%. Oleic acid (48.67%) was the main fatty acid, followed by lauric acid (17.26%), stearic acid (10.74%), palmitic acid (9.88%), and linolenic acid (8.13%). The mean value for free fatty acids content was 0.5%. The P. dactylifera seed oil also exhibited a mean tocol content of 70.75 mg/100 g. α-Tocotrienol was the most abundant isomer (30.19%), followed by γ-tocopherol (23.61%), γ-tocotrienol (19.07%), and α-tocopherol (17.52%). The oils showed high thermal and oxidative stabilities. The findings indicate that date seed oil has the potential to be used in the food industry as an abundant alternative to palm olein.

    PRACTICAL APPLICATION: This study showed that date seed had great nutritional value due to which it can be used for food applications especially as frying or cooking oil. In addition, date oil has also potential to be used in cosmetic and pharmaceutical practices as well. The extraction of oil from Phoenix dactylifera seed on large scale can create positive socioeconomic benefits especially for rural communities and could also assist to resolve the environmental issues generated by excess date production in large scale date-producing countries such as Saudi Arabia.

  4. Nurkhoeriyati T, Huda N, Ahmad R
    J Food Sci, 2011 Jan-Feb;76(1):S48-55.
    PMID: 21535715 DOI: 10.1111/j.1750-3841.2010.01963.x
    The gelation properties of spent duck meat surimi-like material produced using acid solubilization (ACS) or alkaline solubilization (ALS) were studied and compared with conventionally processed (CON) surimi-like material. The ACS process yielded the highest protein recovery (P < 0.05). The ALS process generated the highest lipid reduction, and the CON process yielded the lowest reduction (P < 0.05). Surimi-like material produced by the CON process had the highest gel strength, salt extractable protein (SEP), and water holding capacity (WHC), followed by materials produced via the ALS and ACS processes and untreated duck meat (P < 0.05). The material produced by the CON process also had the highest cohesiveness, hardness, and gumminess values and the lowest springiness value. Material produced by the ACS and ALS processes had higher whiteness values than untreated duck meat gels and gels produced by the CON method (P < 0.05). Surimi-like material produced using the ACS and CON processes had significantly higher myoglobin removal (P < 0.05) than that produced by the ALS method and untreated duck meat. Among all surimi-like materials, the highest Ca(2+)-ATPase activity was found in conventionally produced gels (P < 0.05). This suggests that protein oxidation was induced by acid-alkaline solubilization. The gels produced by ALS had a significantly lower (P < 0.05) total SH content than the other samples. This result showed that the acid-alkaline solubilization clearly improved gelation and color properties of spent duck and possibly applied for other high fat raw material.
  5. Nurkhoeriyati T, Huda N, Ahmad R
    J Food Sci, 2012 Jan;77(1):S91-8.
    PMID: 22260136 DOI: 10.1111/j.1750-3841.2011.02519.x
    The physicochemical properties and sensory analysis of duck meatballs containing duck meat surimi-like material during frozen storage were evaluated. Properties of meatballs containing duck surimi-like material prepared by acid solubilization (ACDS), alkaline solubilization (ALDS), and conventional processing (CDS) as well as duck mince (as the control, CON) were compared. ACDS had significantly higher (P < 0.05) moisture and protein content and lower fat content compared with CON. The thiobarbituric acid-reactive substances (TBARS) value of all samples increased as the storage time increased up to week 8 (P < 0.05), but thereafter it decreased in most of the samples. ACDS and ALDS had significantly higher TBARS values (P < 0.05), and these values remained higher than those of the other samples throughout the frozen storage period. Addition of surimi-like material to the meatballs had significant effects (P < 0.05) on springiness, gumminess, and chewiness values of all samples. Ingredients and frozen storage affected most sensory attributes in samples significantly (P<0.05). No significant increase in growth of organisms occurred during 12-wk frozen storage The results indicate that acid-alkaline solubilization methods improve both physicochemical and sensory properties of duck meatballs containing duck surimi-like material. Thus, these techniques should be applicable to product development of duck surimi-like material.
  6. Shahmohammadi HR, Bakar J, Rahman RA, Adzhan NM
    J Food Sci, 2014 Feb;79(2):E178-83.
    PMID: 24410375 DOI: 10.1111/1750-3841.12324
    To improve textural attributes of puffed corn-fish snack, the effects of 1%, 1.5%, and 2% of calcium carbonate, magnesium silicate (talc), sodium bicarbonate as well as 5% and 10% of wheat bran (as the nucleating materials) on textural attributes were studied. Sensory evaluation, bulk density, expansion ratio, maximum force, and count peaks were measured using the Kramer test. The results showed that all of the additives except bran significantly enhanced the texture. Among them, talc at 0.5% was the best to enhance the density and expansion ratio. Effects of using 0.5% talc on puffed corn-fish snack microstructure were studied using scanning electron microscopy. The average cell diameter of 109 ± 48 μm and cell numbers per square centimeter of 67.4 for talc-treated products were obtained, while for nontalc-treated extrudates, average cell diameter of 798 ± 361 μm and cell numbers per square centimeter of 13.9 were found. Incorporation of 0.5% w/w of magnesium silicate reduced (7-fold) the average cell diameter while increased (4-fold) the cell number.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links