The main objective of this work was to characterize the acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from the body wall of the sea cucumber scientifically called, Stichopus hermanni. For the extraction of ASC and PSC, the pre-treated sea cucumber body walls were subjected to 0.5 M acetic acid and 5 g L-1 pepsin, respectively. The yield of ASC (7.30% ± 0.30%) was found to be lower than the PSC (23.66% ± 0.15%), despite both ASC and PSC having similar chemical compositions except for the quantity of protein. The collagens produced from ASC and PSC show maximum peaks on ultraviolet-visible spectroscopic profiles at wavelengths of 230 and 235 nm, respectively, with no significant difference in the maximum temperature (Tmax ) of the extracted ASC and PSC. The ASC's coloration was whiter than that of the PSC. As a result, the collagen obtained from the body wall of the sea cucumber showed promise for usage as a substitute for collagen derived from marine sources. PRACTICAL APPLICATION: The two most popular methods of collagen extraction were acid hydrolysis and enzymatic hydrolysis. To determine whether the extracted collagen is a suitable substitute for animal collagen in different industries, it is required to characterize its physicochemical qualities. This study discovered a new application for marine collagen in the food industry: The sea cucumber has collagen with a greater yield in pepsin extraction with good physicochemical qualities.
Volatile organic compounds in honey are known for their considerable impact on the organoleptic properties of honey, such as aroma, flavor, taste, and texture. The type and composition of volatile organic compounds are influenced by entomological, geographical, and botanical origins; thus, these compounds have the potential to be chemical markers. Sixty-two volatile compounds were identified using gas chromatography-mass spectrometry from 30 Heterotrigona itama (H. itama) honey samples from 3 different geographical origins. Hydrocarbons and benzene derivatives were the dominant classes of volatile organic compounds in the samples. Both clustering and discriminant analyses demonstrated a clear separation between samples from distant origins (Kedah and Perak), and the volcano plot supported it. The reliability and predictability of the partial least squares-discriminant analysis model from the discriminant analysis were validated using cross-validation (R2 : 0.93; Q2 : 0.83; accuracy: 0.97) and the permutation test (p 1.0) and the Kruskal-Wallis test (p
Despite long-standing uses in several food and medicine traditions, the full potential of the leguminous crop fenugreek (Trigonella foenum-graecum L.) remains to be realized in the modern diet. Not only its seeds, which are highly prized for their culinary and medicinal properties, but also its leaves and stems abound in phytochemicals with high nutritional and health promoting attributes. Fenugreek dual food-medicine applications and reported metabolic activities include hypoglycemic, antihyperlipidemic, antioxidative, anti-inflammatory, antiatherogenic, antihypertensive, anticarcinogenic, immunomodulatory, and antinociceptive effects, with potential organ-protective effects at the cardiovascular, digestive, hepatic, endocrine, and central nervous system levels. Effectiveness in alleviating certain inflammatory skin conditions and dysfunctions of the reproductive system was also suggested. As a food ingredient, fenugreek can enhance the sensory, nutritional, and nutraceutical qualities of a wide variety of foods. Its high nutritive density can assist with the design of dietary items that meet the demand for novelty, variety, and healthier foods. Its seeds provide essential protective nutrients and other bioactive compounds, notably galactomannans, flavonoids, coumarins, saponins, alkaloids, and essential oils, whose health benefits, alone or in conjunction with other bioactives, are only beginning to be tapped into in the food industries. This review summarizes the current state of evidence on fenugreek potential for functional food development, focusing on the nutrients and non-nutrient bioactive components of interest from a dietary perspective, and their applications for enhancing the functional and nutraceutical value of foods and beverages. New developments, safety, clinical evidence, presumed mechanisms of action, and future perspectives are discussed. HIGHLIGHTS: Fenugreek seeds and leaves have long-standing uses in the food-medicine continuum. Fenugreek phytochemicals exert broad-spectrum biological and pharmacological activities. They show high preventive and nutraceutical potential against common chronic diseases. Current evidence supports multiple mechanisms of action mediated by distinct bioactives. Opportunities for fenugreek-based functional foods and nutraceuticals are expanding.
During the frying of foods, undesirable reactions such as protein denaturation, acrylamide formation, and so on occur in the product, which has confirmed carcinogenic effects. The use of antioxidants has been proposed as an effective solution to reduce the formation of these compounds during the process. The current study aimed to assess the impact of an edible coating holding within chia seed gum (CSG) and Rosa canina L. extract (RCE) nanoemulsions on the physicochemical properties, oil uptake, acrylamide formation, 5-hydroxymethyl-2-furfural (HMF) content, and sensory characteristics of beef-turkey burgers. The RCE-loaded nanoemulsions were prepared using the ultrasonic homogenization method, and different concentrations (i.e., 10%, 20%, and 40% w/w) were added to the CSG solutions; these active coatings were used to cover the burgers. CSG-based coatings, especially coatings containing the highest concentration of nanoemulsions (40%), caused a significant decrease in the oil uptake and moisture retention, acrylamide content, and HMF content of fried burgers. The texture of coated burgers was softer than that of uncoated samples; they also had a higher color brightness and a lower browning index. Field emission scanning electron microscopy analysis showed that RCE concentration less than 40% should be used in CSG coatings because it will cause minor cracks, which is an obvious possibility of failure of coating performance. Coating significantly (4-10 times) increased the antioxidant activity of burgers compared to the control. In conclusion, it is suggested to use the active coating produced in this study to improve fried burger quality and modulate acrylamide formation.
The popularity of royal jelly (RJ) as a functional food has attracted attention from various industries, especially nutraceuticals, due to the increasing demand from health enthusiasts. Sebacic acid, 10-hydroxy decanoic acid, and trans-10-hydroxy-2-decanoic acid are the primary medium-chain fatty acids (MCFAs) within RJ responsible for their health benefits. This review aims to consolidate information on these MCFAs' metabolic relationship and health functionalities in nutraceutical applications. We also investigated the natural characteristics mediated by these MCFAs and their metabolism in organisms. Finally, the production of these MCFAs using conventional (from castor oil) and alternative (from RJ) pathways was also discussed. This review can be a reference for using them as functional ingredients in nutraceutical industries.
In this paper, the compatibility, phase behavior, and crystallization properties of the binary blends of palm kernel stearin (PKS) and anhydrous milk fat (AMF) were investigated by analyzing the solid fat content (SFC), thermal properties, polymorphism, and microstructure, with the aim of providing theoretical guidance for the blending of oils. The results showed that the PKS content primarily determined the SFC trend of the binary blends. However, the binary blends demonstrated poor miscibility and eutectic behavior was predominantly observed in the system, particularly at higher temperatures. Only α and β' forms appeared in this blended system. Simultaneously, the addition of PKS elevated the liquid phase transition temperature of the binary blends, considerably significantly increased their crystallization rate when the addition of PKS was more than 20% and increased the density and size of the fat crystals. Finally, the mixing design optimization method was used to get the most suitable ratio of the binary blends in the refrigerated cream system with PKS:AMF to be 0.914:0.086. The cream prepared with the above binary blends was indeed superior in overrun and firmness and had high stability. PRACTICAL APPLICATION: Some fats with special advantages are often limited in their wide application because of their poor crystallization ability. In this paper, the crystallization ability of fats is improved, and their application scenarios are increased through the combination of fats, so as to provide reference for the production of special fats for food.
Nanofibrillated cellulose (NFC) from plant biomass is becoming popular, attributed to the protective encapsulation of bioactive compounds in Pickering emulsion, preventing degradation and stabilizing the emulsion. NFC, as a natural dietary fiber, is a prominent fat replacer, providing a quality enhancement to reduced-fat products. In this study, NFC Pickering emulsions were prepared at NFC concentrations of 0.2%, 0.4%, 0.6%, 0.8%, and 1% to encapsulate carotenoids. The NFC Pickering emulsions at NFC concentrations of 0.4%, 0.6%, 0.8%, and 1% were incorporated into margarine-like reduced fat (3%) spreads as the aqueous phase. Characterization of both NFC Pickering emulsion and the incorporated NFC Pickering emulsion, margarine-like reduced fat spreads, was conducted with mastersizer, rheometer, spectrophotometer, and texture analyzer. The particle size (73.67 ± 0.35 to 94.73 ± 2.21 nm), viscosity (138.36 ± 3.35 to 10545.00 ± 567.10 mPa s), and creaming stability (25% to 100% stable) of the NFC Pickering emulsions were increased significantly when increasing the NFC concentration, whereas the encapsulation efficiency was highest at NFC 0.4% and 0.6%. Although imitating the viscoelastic solid-like behavior of margarine was difficult, the NFC Pickering emulsion properties were still able to enhance hardness, slip melting point, and color of the reduced fat spreads compared to the full-fat margarine, especially at 0.6% of NFC. Overall, extensive performances of NFC can be seen in encapsulating carotenoids, especially at NFC concentrations of 0.4% and 0.6%, with the enhancement of Pickering emulsion stability while portraying futuristic possibilities as a fat replacer in margarine optimally at 0.6% of NFC concentration. PRACTICAL APPLICATION: Nanocellulose extracted from palm dried long fiber was utilized to encapsulate carotenoids and replace fats in margarine-like reduced fat (3%) spreads. Our study portrayed high encapsulation efficiency and successful fat replacement with promising stability performances. Hence, nanocellulose displayed extensive potential as encapsulating agents and fat replacers while providing quality and sustainability enhancements in reduced-fat food.
This systematic review paper aims to discuss the trend in quality assessment properties and constituents of honey at different storage conditions and confer the possible whys and wherefores associated with the significant changes. Initially, a literature search was conducted through Google Scholar, ScienceDirect, PubMed, and Scopus databases. In total, 43 manuscripts published between 2001 and 2023 that met the inclusion and exclusion criteria were chosen for the review. As an outcome of this review, prolonged honey storage could deteriorate sensory, nutritional, and antioxidant properties and promote fermentation, granulation, microbial growth, carcinogenicity, organotoxicity, and nephrotoxicity. This systematic review also recognized that diastase activity, invertase activity, 5-hydroxymethylfurfural content, proline content, sugar content, amino acids, and vitamins could be used as indicators to distinguish fresh and stored honey based on the significant test (p-value) in the reported studies. However, all the reported studies used the simplest approach (one-way ANOVA) to identify the significant differences in the analyzed parameter during the storage period and none of them reported an approach to identify the most influential parameter at different storage conditions. In conclusion, orthogonal partial least squares discriminant analysis (supervised multivariate statistical tool) has to be employed in future studies to find the most influential parameter and could be used to potent chemical markers to distinguish fresh and stored honey because this analysis is incorporated with S-plot, variable importance of projection, and one-way ANOVA, which can produce the most accurate and precise results rather solely depending on one-way ANOVA.