Displaying publications 81 - 92 of 92 in total

Abstract:
Sort:
  1. Albahri AS, Hamid RA, Alwan JK, Al-Qays ZT, Zaidan AA, Zaidan BB, et al.
    J Med Syst, 2020 May 25;44(7):122.
    PMID: 32451808 DOI: 10.1007/s10916-020-01582-x
    Coronaviruses (CoVs) are a large family of viruses that are common in many animal species, including camels, cattle, cats and bats. Animal CoVs, such as Middle East respiratory syndrome-CoV, severe acute respiratory syndrome (SARS)-CoV, and the new virus named SARS-CoV-2, rarely infect and spread among humans. On January 30, 2020, the International Health Regulations Emergency Committee of the World Health Organisation declared the outbreak of the resulting disease from this new CoV called 'COVID-19', as a 'public health emergency of international concern'. This global pandemic has affected almost the whole planet and caused the death of more than 315,131 patients as of the date of this article. In this context, publishers, journals and researchers are urged to research different domains and stop the spread of this deadly virus. The increasing interest in developing artificial intelligence (AI) applications has addressed several medical problems. However, such applications remain insufficient given the high potential threat posed by this virus to global public health. This systematic review addresses automated AI applications based on data mining and machine learning (ML) algorithms for detecting and diagnosing COVID-19. We aimed to obtain an overview of this critical virus, address the limitations of utilising data mining and ML algorithms, and provide the health sector with the benefits of this technique. We used five databases, namely, IEEE Xplore, Web of Science, PubMed, ScienceDirect and Scopus and performed three sequences of search queries between 2010 and 2020. Accurate exclusion criteria and selection strategy were applied to screen the obtained 1305 articles. Only eight articles were fully evaluated and included in this review, and this number only emphasised the insufficiency of research in this important area. After analysing all included studies, the results were distributed following the year of publication and the commonly used data mining and ML algorithms. The results found in all papers were discussed to find the gaps in all reviewed papers. Characteristics, such as motivations, challenges, limitations, recommendations, case studies, and features and classes used, were analysed in detail. This study reviewed the state-of-the-art techniques for CoV prediction algorithms based on data mining and ML assessment. The reliability and acceptability of extracted information and datasets from implemented technologies in the literature were considered. Findings showed that researchers must proceed with insights they gain, focus on identifying solutions for CoV problems, and introduce new improvements. The growing emphasis on data mining and ML techniques in medical fields can provide the right environment for change and improvement.
  2. Albahri AS, Zaidan AA, Albahri OS, Zaidan BB, Alsalem MA
    J Med Syst, 2018 Jun 23;42(8):137.
    PMID: 29936593 DOI: 10.1007/s10916-018-0983-9
    The burden on healthcare services in the world has increased substantially in the past decades. The quality and quantity of care have to increase to meet surging demands, especially among patients with chronic heart diseases. The expansion of information and communication technologies has led to new models for the delivery healthcare services in telemedicine. Therefore, mHealth plays an imperative role in the sustainable delivery of healthcare services in telemedicine. This paper presents a comprehensive review of healthcare service provision. It highlights the open issues and challenges related to the use of the real-time fault-tolerant mHealth system in telemedicine. The methodological aspects of mHealth are examined, and three distinct and successive phases are presented. The first discusses the identification process for establishing a decision matrix based on a crossover of 'time of arrival of patient at the hospital/multi-services' and 'hospitals' within mHealth. The second phase discusses the development of a decision matrix for hospital selection based on the MAHP method. The third phase discusses the validation of the proposed system.
  3. Alanazi HO, Zaidan AA, Zaidan BB, Kiah ML, Al-Bakri SH
    J Med Syst, 2015 Jan;39(1):165.
    PMID: 25481568 DOI: 10.1007/s10916-014-0165-3
    This study has two objectives. First, it aims to develop a system with a highly secured approach to transmitting electronic medical records (EMRs), and second, it aims to identify entities that transmit private patient information without permission. The NTRU and the Advanced Encryption Standard (AES) cryptosystems are secured encryption methods. The AES is a tested technology that has already been utilized in several systems to secure sensitive data. The United States government has been using AES since June 2003 to protect sensitive and essential information. Meanwhile, NTRU protects sensitive data against attacks through the use of quantum computers, which can break the RSA cryptosystem and elliptic curve cryptography algorithms. A hybrid of AES and NTRU is developed in this work to improve EMR security. The proposed hybrid cryptography technique is implemented to secure the data transmission process of EMRs. The proposed security solution can provide protection for over 40 years and is resistant to quantum computers. Moreover, the technique provides the necessary evidence required by law to identify disclosure or misuse of patient records. The proposed solution can effectively secure EMR transmission and protect patient rights. It also identifies the source responsible for disclosing confidential patient records. The proposed hybrid technique for securing data managed by institutional websites must be improved in the future.
  4. Alanazi HO, Abdullah AH, Qureshi KN
    J Med Syst, 2017 Apr;41(4):69.
    PMID: 28285459 DOI: 10.1007/s10916-017-0715-6
    Recently, Artificial Intelligence (AI) has been used widely in medicine and health care sector. In machine learning, the classification or prediction is a major field of AI. Today, the study of existing predictive models based on machine learning methods is extremely active. Doctors need accurate predictions for the outcomes of their patients' diseases. In addition, for accurate predictions, timing is another significant factor that influences treatment decisions. In this paper, existing predictive models in medicine and health care have critically reviewed. Furthermore, the most famous machine learning methods have explained, and the confusion between a statistical approach and machine learning has clarified. A review of related literature reveals that the predictions of existing predictive models differ even when the same dataset is used. Therefore, existing predictive models are essential, and current methods must be improved.
  5. Al-Busaidi AM, Khriji L, Touati F, Rasid MF, Mnaouer AB
    J Med Syst, 2017 Sep 12;41(10):166.
    PMID: 28900815 DOI: 10.1007/s10916-017-0817-1
    One of the major issues in time-critical medical applications using wireless technology is the size of the payload packet, which is generally designed to be very small to improve the transmission process. Using small packets to transmit continuous ECG data is still costly. Thus, data compression is commonly used to reduce the huge amount of ECG data transmitted through telecardiology devices. In this paper, a new ECG compression scheme is introduced to ensure that the compressed ECG segments fit into the available limited payload packets, while maintaining a fixed CR to preserve the diagnostic information. The scheme automatically divides the ECG block into segments, while maintaining other compression parameters fixed. This scheme adopts discrete wavelet transform (DWT) method to decompose the ECG data, bit-field preserving (BFP) method to preserve the quality of the DWT coefficients, and a modified running-length encoding (RLE) scheme to encode the coefficients. The proposed dynamic compression scheme showed promising results with a percentage packet reduction (PR) of about 85.39% at low percentage root-mean square difference (PRD) values, less than 1%. ECG records from MIT-BIH Arrhythmia Database were used to test the proposed method. The simulation results showed promising performance that satisfies the needs of portable telecardiology systems, like the limited payload size and low power consumption.
  6. Ainon RN, Bulgiba AM, Lahsasna A
    J Med Syst, 2012 Apr;36(2):463-73.
    PMID: 20703704 DOI: 10.1007/s10916-010-9491-2
    This paper aims at identifying the factors that would help to diagnose acute myocardial infarction (AMI) using data from an electronic medical record system (EMR) and then generating structure decisions in the form of linguistic fuzzy rules to help predict and understand the outcome of the diagnosis. Since there is a tradeoff in the fuzzy system between the accuracy which measures the capability of the system to predict the diagnosis of AMI and transparency which reflects its ability to describe the symptoms-diagnosis relation in an understandable way, the proposed fuzzy rules are designed in a such a way to find an appropriate balance between these two conflicting modeling objectives using multi-objective genetic algorithms. The main advantage of the generated linguistic fuzzy rules is their ability to describe the relation between the symptoms and the outcome of the diagnosis in an understandable way, close to human thinking and this feature may help doctors to understand the decision process of the fuzzy rules.
  7. Ahmad F, Isa NA, Hussain Z, Osman MK
    J Med Syst, 2013 Apr;37(2):9934.
    PMID: 23479268 DOI: 10.1007/s10916-013-9934-7
    An improved genetic algorithm procedure is introduced in this work based on the theory of the most highly fit parents (both male and female) are most likely to produce healthiest offspring. It avoids the destruction of near optimal information and promotes further search around the potential region by encouraging the exchange of highly important information among the fittest solution. A novel crossover technique called Segmented Multi-chromosome Crossover is also introduced. It maintains the information contained in gene segments and allows offspring to inherit information from multiple parent chromosomes. The improved GA is applied for the automatic and simultaneous parameter optimization and feature selection of multi-layer perceptron network in medical disease diagnosis. Compared to the previous works, the average accuracy of the proposed algorithm is the best among all algorithms for diabetes and heart dataset, and the second best for cancer dataset.
  8. Acharya UR, Fernandes SL, WeiKoh JE, Ciaccio EJ, Fabell MKM, Tanik UJ, et al.
    J Med Syst, 2019 Aug 09;43(9):302.
    PMID: 31396722 DOI: 10.1007/s10916-019-1428-9
    The aim of this work is to develop a Computer-Aided-Brain-Diagnosis (CABD) system that can determine if a brain scan shows signs of Alzheimer's disease. The method utilizes Magnetic Resonance Imaging (MRI) for classification with several feature extraction techniques. MRI is a non-invasive procedure, widely adopted in hospitals to examine cognitive abnormalities. Images are acquired using the T2 imaging sequence. The paradigm consists of a series of quantitative techniques: filtering, feature extraction, Student's t-test based feature selection, and k-Nearest Neighbor (KNN) based classification. Additionally, a comparative analysis is done by implementing other feature extraction procedures that are described in the literature. Our findings suggest that the Shearlet Transform (ST) feature extraction technique offers improved results for Alzheimer's diagnosis as compared to alternative methods. The proposed CABD tool with the ST + KNN technique provided accuracy of 94.54%, precision of 88.33%, sensitivity of 96.30% and specificity of 93.64%. Furthermore, this tool also offered an accuracy, precision, sensitivity and specificity of 98.48%, 100%, 96.97% and 100%, respectively, with the benchmark MRI database.
  9. Abidi SS
    J Med Syst, 2001 Jun;25(3):147-65.
    PMID: 11433545
    Worldwide healthcare delivery trends are undergoing a subtle paradigm shift--patient centered services as opposed to provider centered services and wellness maintenance as opposed to illness management. In this paper we present a Tele-Healthcare project TIDE--Tele-Healthcare Information and Diagnostic Environment. TIDE manifests an 'intelligent' healthcare environment that aims to ensure lifelong coverage of person-specific health maintenance decision-support services--i.e., both wellness maintenance and illness management services--ubiquitously available via the Internet/WWW. Taking on an all-encompassing health maintenance role--spanning from wellness to illness issues--the functionality of TIDE involves the generation and delivery of (a) Personalized, Pro-active, Persistent, Perpetual, and Present wellness maintenance services, and (b) remote diagnostic services for managing noncritical illnesses. Technically, TIDE is an amalgamation of diverse computer technologies--Artificial Intelligence, Internet, Multimedia, Databases, and Medical Informatics--to implement a sophisticated healthcare delivery infostructure.
  10. Abdulhay E, Mohammed MA, Ibrahim DA, Arunkumar N, Venkatraman V
    J Med Syst, 2018 Feb 17;42(4):58.
    PMID: 29455440 DOI: 10.1007/s10916-018-0912-y
    Blood leucocytes segmentation in medical images is viewed as difficult process due to the variability of blood cells concerning their shape and size and the difficulty towards determining location of Blood Leucocytes. Physical analysis of blood tests to recognize leukocytes is tedious, time-consuming and liable to error because of the various morphological components of the cells. Segmentation of medical imagery has been considered as a difficult task because of complexity of images, and also due to the non-availability of leucocytes models which entirely captures the probable shapes in each structures and also incorporate cell overlapping, the expansive variety of the blood cells concerning their shape and size, various elements influencing the outer appearance of the blood leucocytes, and low Static Microscope Image disparity from extra issues outcoming about because of noise. We suggest a strategy towards segmentation of blood leucocytes using static microscope images which is a resultant of three prevailing systems of computer vision fiction: enhancing the image, Support vector machine for segmenting the image, and filtering out non ROI (region of interest) on the basis of Local binary patterns and texture features. Every one of these strategies are modified for blood leucocytes division issue, in this manner the subsequent techniques are very vigorous when compared with its individual segments. Eventually, we assess framework based by compare the outcome and manual division. The findings outcome from this study have shown a new approach that automatically segments the blood leucocytes and identify it from a static microscope images. Initially, the method uses a trainable segmentation procedure and trained support vector machine classifier to accurately identify the position of the ROI. After that, filtering out non ROI have proposed based on histogram analysis to avoid the non ROI and chose the right object. Finally, identify the blood leucocytes type using the texture feature. The performance of the foreseen approach has been tried in appearing differently in relation to the system against manual examination by a gynaecologist utilizing diverse scales. A total of 100 microscope images were used for the comparison, and the results showed that the proposed solution is a viable alternative to the manual segmentation method for accurately determining the ROI. We have evaluated the blood leucocytes identification using the ROI texture (LBP Feature). The identification accuracy in the technique used is about 95.3%., with 100 sensitivity and 91.66% specificity.
  11. Abdar M, Wijayaningrum VN, Hussain S, Alizadehsani R, Plawiak P, Acharya UR, et al.
    J Med Syst, 2019 Jun 07;43(7):220.
    PMID: 31175462 DOI: 10.1007/s10916-019-1343-0
    Wart disease (WD) is a skin illness on the human body which is caused by the human papillomavirus (HPV). This study mainly concentrates on common and plantar warts. There are various treatment methods for this disease, including the popular immunotherapy and cryotherapy methods. Manual evaluation of the WD treatment response is challenging. Furthermore, traditional machine learning methods are not robust enough in WD classification as they cannot deal effectively with small number of attributes. This study proposes a new evolutionary-based computer-aided diagnosis (CAD) system using machine learning to classify the WD treatment response. The main architecture of our CAD system is based on the combination of improved adaptive particle swarm optimization (IAPSO) algorithm and artificial immune recognition system (AIRS). The cross-validation protocol was applied to test our machine learning-based classification system, including five different partition protocols (K2, K3, K4, K5 and K10). Our database consisted of 180 records taken from immunotherapy and cryotherapy databases. The best results were obtained using the K10 protocol that provided the precision, recall, F-measure and accuracy values of 0.8908, 0.8943, 0.8916 and 90%, respectively. Our IAPSO system showed the reliability of 98.68%. It was implemented in Java, while integrated development environment (IDE) was implemented using NetBeans. Our encouraging results suggest that the proposed IAPSO-AIRS system can be employed for the WD management in clinical environment.
  12. Abbas AA, Guo X, Tan WH, Jalab HA
    J Med Syst, 2014 Aug;38(8):80.
    PMID: 24957396 DOI: 10.1007/s10916-014-0080-7
    In a computerized image analysis environment, the irregularity of a lesion border has been used to differentiate between malignant melanoma and other pigmented skin lesions. The accuracy of the automated lesion border detection is a significant step towards accurate classification at a later stage. In this paper, we propose the use of a combined Spline and B-spline in order to enhance the quality of dermoscopic images before segmentation. In this paper, morphological operations and median filter were used first to remove noise from the original image during pre-processing. Then we proceeded to adjust image RGB values to the optimal color channel (green channel). The combined Spline and B-spline method was subsequently adopted to enhance the image before segmentation. The lesion segmentation was completed based on threshold value empirically obtained using the optimal color channel. Finally, morphological operations were utilized to merge the smaller regions with the main lesion region. Improvement on the average segmentation accuracy was observed in the experimental results conducted on 70 dermoscopic images. The average accuracy of segmentation achieved in this paper was 97.21 % (where, the average sensitivity and specificity were 94 % and 98.05 % respectively).
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links