Displaying publications 81 - 88 of 88 in total

Abstract:
Sort:
  1. Tiaw, Kah Fookand, Zarina Bibi Ibrahim
    MATEMATIKA, 2017;33(2):215-226.
    MyJurnal
    In this paper, we study the numerical method for solving second order Fuzzy
    Differential Equations (FDEs) using Block Backward Differential Formulas (BBDF)
    under generalized concept of higher-order fuzzy differentiability. Implementation of
    the method using Newton iteration is discussed. Numerical results obtained by BBDF
    are presented and compared with Backward Differential Formulas (BDF) and exact
    solutions. Several numerical examples are provided to illustrate our methods.
  2. Ummu Atiqah Mohd Roslan
    MATEMATIKA, 2018;34(1):13-21.
    MyJurnal
    Markov map is one example of interval maps where it is a piecewise expanding
    map and obeys the Markov property. One well-known example of Markov map is the
    doubling map, a map which has two subintervals with equal partitions. In this paper, we
    are interested to investigate another type of Markov map, the so-called skewed doubling
    map. This map is a more generalized map than the doubling map. Thus, the aims of this
    paper are to find the fixed points as well as the periodic points for the skewed doubling
    map and to investigate the sensitive dependence on initial conditions of this map. The
    method considered here is the cobweb diagram. Numerical results suggest that there exist
    dense of periodic orbits for this map. The sensitivity of this map to initial conditions is
    also verified where small differences in initial conditions give different behaviour of the
    orbits in the map.
  3. Vincent Daniel David, Arifah Bahar, Zainal Abdul Aziz
    MATEMATIKA, 2018;34(101):179-187.
    MyJurnal
    The flow of water over an obstacle is a fundamental problem in fluid mechanics.
    Transcritical flow means the wave phenomenon near the exact criticality. The transcriti-
    cal flow cannot be handled by linear solutions as the energy is unable to propagate away
    from the obstacle. Thus, it is important to carry out a study to identify suitable model
    to analyse the transcritical flow. The aim of this study is to analyse the transcritical
    flow over a bump as localized obstacles where the bump consequently generates upstream
    and downstream flows. Nonlinear shallow water forced Korteweg-de Vries (fKdV) model
    is used to analyse the flow over the bump. This theoretical model, containing forcing
    functions represents bottom topography is considered as the simplified model to describe
    water flows over a bump. The effect of water dispersion over the forcing region is in-
    vestigated using the fKdV model. Homotopy Analysis Method (HAM) is used to solve
    this theoretical fKdV model. The HAM solution which is chosen with a special choice
    of }-value describes the physical flow of waves and the significance of dispersion over a
    bump is elaborated.
  4. Wan Heng Fong, Nurul Izzaty Ismail, Nor Haniza Sarmin
    MATEMATIKA, 2019;35(301):1-14.
    MyJurnal
    Abstract In DNA splicing system, DNA molecules are cut and recombined with the presence of restriction enzymes and a ligase. The splicing system is analyzed via formal language theory where the molecules resulting from the splicing system generate a language which is called a splicing language. In nature, DNA molecules can be read in two ways; forward and backward. A sequence of string that reads the same forward and backward is known as a palindrome. Palindromic and non-palindromic sequences can also be recognized in restriction enzymes. Research on splicing languages from DNA splicing systems with palindromic and non-palindromic restriction enzymes have been done previously. This research is motivated by the problem of DNA assembly to read millions of long DNA sequences where the concepts of automata and grammars are applied in DNA splicing systems to simplify the assembly in short-read sequences. The splicing languages generated from DNA splicing systems with palindromic and non- palindromic restriction enzymes are deduced from the grammars which are visualised as automata diagrams, and presented by transition graphs where transition labels represent the language of DNA molecules resulting from the respective DNA splicing systems.
  5. Wan, Heng Fong, Nurul Izzaty Ismail
    MATEMATIKA, 2018;34(1):59-71.
    MyJurnal
    In DNA splicing system, the potential effect of sets of restriction enzymes and
    a ligase that allow DNA molecules to be cleaved and re-associated to produce further
    molecules is modelled mathematically. This modelling is done in the framework of formal
    language theory, in which the nitrogen bases, nucleotides and restriction sites are modelled
    as alphabets, strings and rules respectively. The molecules resulting from a splicing system
    is depicted as the splicing language. In this research, the splicing language resulting from
    DNA splicing systems with one palindromic restriction enzyme for one and two (nonoverlapping)
    cutting sites are generalised as regular expressions.
  6. Yahaya Shagaiya Daniel, Zainal Abdul Aziz, Zuhaila Ismail, Faisal Salah
    MATEMATIKA, 2018;34(2):393-417.
    MyJurnal
    Analyzed the effects of thermal radiation, chemical reaction, heat gener-
    ation/absorption, magnetic and electric fields on unsteady flow and heat transfer of
    nanofluid. The transport equations used passively controlled. A similarity solution is
    employed to transformed the governing equations from partial differential equations to
    a set of ordinary differential equations, and then solve using Keller box method. It was
    found that the temperature is a decreasing function with the thermal stratification due to
    the fact the density of the fluid in the lower vicinity is much higher compared to the upper
    region, whereas the thermal radiation, viscous dissipation and heat generation enhanced
    the nanofluid temperature and thermal layer thickness.
  7. Yusof, F. M., Md. Ismail, A. I. B., Abu Hasan, Y.
    MATEMATIKA, 2018;34(2):205-226.
    MyJurnal
    Hantaviruses are etiological agents of zoonotic diseases and certain other dis-
    eases, which pose a serious threat to human health. When rodent and predator popula-
    tions share in an ecology, the competitive force of the populations can lead to a reduction
    or elimination of a hantavirus outbreak. The effect of the predator eliminating rodents
    and predator populations that tends to reduce or eliminate hantavirus infection is investi-
    gated. The existence of several equilibrium points of the model is identified and local and
    global stabilities of the model at these equilibrium points are analysed in detail. Numerical
    simulations are carried out to illustrate our model results.
  8. Yusrina Andu, Muhammad Hisyam Lee, Zakariya Yahya Algamal
    MATEMATIKA, 2019;35(2):139-147.
    MyJurnal
    The fast-growing urbanization has contributed to the construction sector be- coming one of the major sectors traded in the world stock market. In general, non- stationarity is highly related to most of the stock market price pattern. Even though stationarity transformation is a common approach, yet this may prompt to originality loss of the data. Hence, the non-transformation technique using a generalized dynamic principal component (GDPC) were considered for this study. Comparison of GDPC was performed with two transformed principal component techniques. This is pertinent as to observe a larger perspective of both techniques. Thus, the latest weekly two-years observations of nine constructions stock market price from seven different countries were applied. The data was tested for stationarity before performing the analysis. As a re- sult, the mean squared error in the non-transformed technique shows eight lowest values. Similarly, eight construction stock market prices had the highest percentage of explained variance. In conclusion, a non-transformed technique can also present a better result outcome without the stationarity transformation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links