Displaying publications 81 - 100 of 117 in total

Abstract:
Sort:
  1. Gandhi S, Nor Rashid N, Mohamad Razif MF, Othman S
    Mol Biol Rep, 2021 Jun;48(6):5121-5133.
    PMID: 34169395 DOI: 10.1007/s11033-021-06509-4
    The High-Risk Human Papillomaviruses (HR-HPVs) 16 and 18 are known to cause cervical cancer, which is primarily attributed to E6 and E7 oncoproteins. In addition, recent studies have focused on the vital role of the p130 pocket protein as an oncosuppressor to limit the expression of E2F transcription factors required for cell cycle progression. In view of this, the current study was conducted to investigate the mechanism by which transfection with HPV16/18 E7 leads to the deregulation of the host cell cycle, altering the localisation of p130, and expression of differentiation genes in Human Keratinocytes (HaCaT) cells. Co-immunoprecipitation, Western blot analysis, immunofluorescence microscopy, flow cytometry, quantitative-Polymerase Chain Reaction (qPCR), and the inhibition of p130 by MG132 inhibitor were employed to investigate the loss of p130 and its disruption in HPV 16/18 E7-transfected HaCaT cells. The HPV16- and HPV18-transformed cells, known as CaSki and HeLa, respectively, were also used to complement the ectopic expressions of E7 in HaCaT cells. Normal keratinocytes displayed higher level of p130 expression than HPV-transformed cells. In addition, the immunofluorescence analysis revealed that both HPV 16/18 E7-transfected HaCaT and HPV-transformed cells exhibited higher level of cytoplasmic p130 compared to nuclear p130. A significant increase in the number of S/G2 phase cells in HPV-transformed cells was also recorded since E7 has been shown to stimulate proliferation through the deactivation of Retinoblastoma Protein (pRB)-dependent G1/S checkpoint. Furthermore, the findings recorded the down-regulation of keratinocyte differentiation markers, namely p130, keratin10, and involucrin. The proteasomal degradation of the exported p130 confirmed the cellular localisation pattern of p130, which was commonly observed in cancerous cells. The findings provide strong evidence that the localisation of nuclear p130 nuclear was disrupted by HPV16/18 E7 led to the deregulation of the cell cycle and the impairment of cellular differentiation ultimately lead to cellular transformation.
  2. Subha ST, Chin JW, Cheah YK, Mohtarrudin N, Saidi HI
    Mol Biol Rep, 2022 Feb;49(2):1501-1511.
    PMID: 34837627 DOI: 10.1007/s11033-021-06954-1
    MicroRNAs are small non-coding RNA that regulate gene expressions of human body. To date, numerous studies have reported that microRNAs possess great diagnostic and prognostic power in head and neck cancer and had governed a lot of attention. The factor for the successfulness of miRNAs in these aspects is due to cancer being fundamentally tied to genetic changes, which are regulated by these miRNAs. Head and neck cancer, leading the world record for cancer as number sixth, is caused by multiple risk factors such as tobacco consumption, alcohol consumption, dietary factors, ethnicity, family history, and human papilloma virus. It derives at locations such as oral cavity, pharynx, larynx, paranasal sinus and salivary gland and have high rate of mortality with high recurrence rate. Besides, head and neck cancer is also usually having poor prognosis due to its asymptomatic nature. However, this diagnostic and prognostic power can be further improved by using multiple panels of miRNA as a signature or even combined with TNM staging system to obtain even more remarkable results. This is due to multiple factors such as tumour heterogeneity and components of the tumour which may affect the composition of miRNAs. This review covers the examples of such miRNA signatures, compare their diagnostic and prognostic powers, discuss some controversial roles of unreported miRNAs, and the molecular mechanisms of the miRNAs in gene targeting and pathways.
  3. Ong CY, Abdalkareem EA, Khoo BY
    Mol Biol Rep, 2022 Feb;49(2):1529-1535.
    PMID: 34981335 DOI: 10.1007/s11033-021-07006-4
    Infection processes induce various soluble factors that are carcinogens in humans; therefore, research into the soluble factors of chronic disease released from cells that have been infected with parasites is warranted. Parasitic infections in host cells release high levels of IFNγ. Studies have hypothesised that parasitosis-associated carcinogenesis might be analogous to colorectal cancers developed from inflammatory bowel diseases, whereby various cytokines and chemokines are secreted during chronic inflammation. IL-18 and IL-21 are other factors that might be involved in the development of colorectal cancer in schistosomiasis patients and patients with other infections. IL-21 has profound effects on tumour growth and immunosurveillance of colitis-associated tumourigenesis, thereby emphasising its involvement in the pathogenesis of colorectal cancer. The prominent role of IL-21 in antitumour effects greatly depends on the enhanced cytolytic activity of NK cells and the pathogenic role of IL-21, which is often associated with enhanced risks of cancer and chronic inflammatory processes. As IL-15 is also related to chronic disease, it is believed to also play a role in the antitumour effect of colorectal carcinogenesis. IL-15 generates and maintains long-term CD8+ T cell immunity against T. gondii to control the infection of intracellular pathogens. The lack of IL-15 in mice contributes to the downregulation of the IFNγ-producing CD4+ T cell response against acute T. gondii infection. IL-15 induces hyperplasia and supports the progressive growth of colon cancer via multiple functions. The limited role of IL-15 in the development of NK and CD8+ T cells suggests that there may be other cytokines compensating for the loss of the IL-15 gene.
  4. Asghar A, Firasat S, Afshan K, Naz S
    Mol Biol Rep, 2023 Jan;50(1):57-64.
    PMID: 36301463 DOI: 10.1007/s11033-022-08011-x
    BACKGROUND: CDK5 regulatory subunit associated protein 1 like 1 (CDKAL1) encodes a tRNA modifying enzyme involved in the proper protein translation and regulation of insulin production encoded by the CDKL gene. Sequence variations in the CDKAL1 gene lead to the misreading of the Lys codon in proinsulin, resulting in decreased glucose-stimulated proinsulin production. Various polymorphic sequence variants of the CDKAL1 gene such as rs7754840, rs7756992, rs9465871, and rs10946398 are reported to be associated with type 2 diabetes mellitus and gestational diabetes mellitus (GDM) incidence. One of these single nucleotide polymorphisms i.e., rs10946398 has been reported to impact the risk of GDM and its outcomes in pregnant women of different ethnicities i.e., Egypt, Chinese, Korean, Indian, Arab, and Malaysian. Numerous findings have shown that rs10946398 overturns the regulation of CDKAL1 expression, resulting in decreased insulin production and elevated risk of GDM. However, there is no data regarding rs10946398 genotype association with GDM incidence in our population.

    METHODOLOGY: In this study, 47 GDM patients and 40 age-matched controls were genotyped for rs10946398 CDKAL1 variant using Tetra primer Amplification Refractory Mutation System Polymerase Chain Reaction (Tetra ARMS-PCR).

    RESULTS: Analysis of the results showed the significant association of the C allele of CDKAL1 SNP rs10946398 (χ2 = 0.02 p = 0.001) with the risk of GDM development. Conclusively, the results support the role of SNP i.e., rs10946398 of CDKAL1 gene in GDM development in Pakistani female patients. However, future large-scale studies are needed to functionally authenticate the role of variant genotypes in the disease pathogenesis and progression.

  5. Haque MA, Rafii MY, Yusoff MM, Ali NS, Yusuff O, Arolu F, et al.
    Mol Biol Rep, 2023 Mar;50(3):2795-2812.
    PMID: 36592290 DOI: 10.1007/s11033-022-07853-9
    Natural and man-made ecosystems worldwide are subjected to flooding, which is a form of environmental stress. Genetic variability in the plant response to flooding involves variations in metabolism, architecture, and elongation development that are related with a low oxygen escape strategy and an opposing quiescence scheme that enables prolonged submergence endurance. Flooding is typically associated with a decrease in O2 in the cells, which is especially severe when photosynthesis is absent or limited, leading to significant annual yield losses globally. Over the past two decades, considerable advancements have been made in understanding of mechanisms of rice adaptation and tolerance to flooding/submergence. The mapping and identification of Sub1 QTL have led to the development of marker-assisted selection (MAS) breeding approach to improve flooding-tolerant rice varieties in submergence-prone ecosystems. The Sub1 incorporated in rice varieties showed tolerance during flash flood, but not during stagnant conditions. Hence, gene pyramiding techniques can be applied to combine/stack multiple resistant genes for developing flood-resilient rice varieties for different types of flooding stresses. This review contains an update on the latest advances in understanding the molecular mechanisms, metabolic adaptions, and genetic factors governing rice flooding tolerance. A better understanding of molecular genetics and adaptation mechanisms that enhance flood-tolerant varieties under different flooding regimes was also discussed.
  6. Safi SZ, Saeed L, Shah H, Latif Z, Ali A, Imran M, et al.
    Mol Biol Rep, 2022 Oct;49(10):9473-9480.
    PMID: 35925485 DOI: 10.1007/s11033-022-07816-0
    BACKGROUND: The current study aimed to investigate the stimulatory effect of beta-adrenergic receptors (β-ARs) on brain derived neurotropic factor (BDNF) and cAMP response element binding protein (CREB).

    METHODS: Human Müller cells were cultured in low and high glucose conditions. Cells were treated with xamoterol (selective agonist for β1-AR), salmeterol (selective agonist for β2-AR), isoproterenol (β-ARs agonist) and propranolol (β-ARs antagonist), at 20 µM concentration for 24 h. Western Blotting assay was performed for the gene expression analysis. DNA damage was evaluated by TUNEL assay. DCFH-DA assay was used to check the level of reactive oxygen species (ROS). Cytochrome C release was measured by ELISA.

    RESULTS: Xamoterol, salmeterol and isoproterenol showed no effect on Caspase-8 but it reduced the apoptosis and increased the expression of BDNF in Müller cells. A significant change in the expression of caspase-3 was observed in cells treated with xamoterol and salmeterol as compared to isoproterenol. Xamoterol, salmeterol and isoproterenol significantly decreased the reactive oxygen species (ROS) when treated for 24 hours. Glucose-induced cytochrome c release was disrupted in Müller cells.

    CONCLUSION: β-ARs, stimulated by agonist play a protective role in hyperglycemic Müller cells, with the suppression of glucose-induced caspase-3 and cytochrome c release. B-Ars may directly mediate the gene expression of BDNF.

  7. Mostaffa NH, Suhaimi AH, Al-Idrus A
    Mol Biol Rep, 2023 Mar 15.
    PMID: 36920596 DOI: 10.1007/s11033-023-08345-0
    Interactomics is a branch of systems biology that deals with the study of protein-protein interactions and how these interactions influence phenotypes. Identifying the interactomes involved during host-pathogen interaction events may bring us a step closer to deciphering the molecular mechanisms underlying plant defence. Here, we conducted a systematic review of plant interactomics studies over the last two decades and found that while a substantial progress has been made in the field, plant-pathogen interactomics remains a less-travelled route. As an effort to facilitate the progress in this field, we provide here a comprehensive research pipeline for an in planta plant-pathogen interactomics study that encompasses the in silico prediction step to the validation step, unconfined to model plants. We also highlight four challenges in plant-pathogen interactomics with plausible solution(s) for each.
  8. Lim FH, Rasid OA, Idris AS, As'wad AWM, Vadamalai G, Parveez GKA, et al.
    Mol Biol Rep, 2023 Mar;50(3):2367-2379.
    PMID: 36580194 DOI: 10.1007/s11033-022-08131-4
    BACKGROUND: The basidiomycete fungus, Ganoderma boninense is the main contributor to oil palm Basal Stem Rot (BSR) in Malaysia and Indonesia. Lanosterol 14α-Demethylase (ERG11) is a key enzyme involved in biosynthesis of ergosterol, which is an important component in the fungal cell membrane. The Azole group fungicides are effective against pathogenic fungi including G. boninense by inhibiting the ERG11 activity. However, the work on molecular characterization of G. boninense ERG11 is still unavailable today.

    METHODS AND RESULTS: This study aimed to isolate and characterize the full-length cDNA encoding ERG11 from G. boninense. The G. boninense ERG11 gene expression during interaction with oil palm was also studied. A full-length 1860 bp cDNA encoding ERG11 was successfully isolated from G. boninense. The G. boninense ERG11 shared 91% similarity to ERG11 from other basidiomycete fungi. The protein structure homology modeling of GbERG11 was analyzed using the SWISS-MODEL workspace. Southern blot and genome data analyses showed that there is only a single copy of ERG11 gene in the G. boninense genome. Based on the in-vitro inoculation study, the ERG11 gene expression in G. boninense has shown almost 2-fold upregulation with the presence of oil palm.

    CONCLUSION: This study provided molecular information and characterization study on the G. boninense ERG11 and this knowledge could be used to design effective control measures to tackle the BSR disease of oil palm.

  9. Paul A, Ismail MN, Tang TH, Ng SK
    Mol Biol Rep, 2023 Apr;50(4):3909-3917.
    PMID: 36662450 DOI: 10.1007/s11033-023-08253-3
    BACKGROUND: IRF9 is a transcription factor that mediates the expression of interferon-stimulated genes (ISGs) through the Janus kinase-Signal transducer and activator of transcription (JAK-STAT) pathway. The JAK-STAT pathway is regulated through phosphorylation reactions, in which all components of the pathway are known to be phosphorylated except IRF9. The enigma surrounding IRF9 regulation by a phosphorylation event is intriguing. As IRF9 plays a major role in establishing an antiviral state in host cells, the topic of IRF9 regulation warrants deeper investigation.

    METHODS: Initially, total lysates of 2fTGH and U2A cells (transfected with recombinant IRF9) were filter-selected and concentrated using phosphoprotein enrichment assay. The phosphoprotein state of IRF9 was further confirmed using Phos-tag™ assay. All protein expression was determined using Western blotting. Tandem mass spectrometry was conducted on immunoprecipitated IRF9 to identify the phosphorylated amino acids. Finally, site-directed mutagenesis was performed and the effects of mutated IRF9 on relevant ISGs (i.e., USP18 and Mx1) was evaluated using qPCR.

    RESULTS: IRF9 is phosphorylated at S252 and S253 under IFNβ-induced condition and R242 under non-induced condition. Site-directed mutagenesis of S252 and S253 to either alanine or aspartic acid has a modest effect on the upregulation of USP18 gene-a negative regulator of type I interferon (IFN) response-but not Mx1 gene.

    CONCLUSION: Our preliminary study shows that IRF9 is phosphorylated and possibly regulates USP18 gene expression. However, further in vivo studies are needed to determine the significance of IRF9 phosphorylation.

  10. Tan WL, Subha ST, Mohtarrudin N, Cheah YK
    Mol Biol Rep, 2023 Jun;50(6):5395-5405.
    PMID: 37074612 DOI: 10.1007/s11033-023-08421-5
    The self-renew ability of cancer stem cells (CSCs) continues to challenge our determination for accomplishing cancer therapy breakthrough. Ineffectiveness of current cancer therapies to eradicate CSCs has contributed to chemoresistance and tumor recurrence. Yet, the discoveries of highly effective therapies have not been thoroughly developed. Further insights into cancer metabolomics and gene-regulated mechanisms of mitochondria in CSCs can expedite the development of novel anticancer drugs. In cancer cells, the metabolism is reprogrammed from oxidative phosphorylation (OXPHOS) to glycolysis. This alteration allows the cancer cell to receive continuous energy supplies and avoid apoptosis. The pyruvate obtained from glycolysis produces acetyl-coenzyme A (Acetyl-CoA) via oxidative decarboxylation and enters the tricarboxylic acid cycle for adenosine triphosphate generation. Mitochondrial calcium ion (Ca2+) uptake is responsible for mitochondrial physiology regulation, and reduced uptake of Ca2+  inhibits apoptosis and enhances cell survival in cancer. There have been many discoveries of mitochondria-associated microRNAs (miRNAs) stimulating the metabolic alterations in mitochondria via gene regulation which promote cancer cell survival. These miRNAs are also found in CSCs where they regulate genes and activate different mechanisms to destroy the mitochondria and enhance CSCs survival. By targeting the miRNAs that induced mitochondrial destruction, the mitochondrial functions can be restored; thus, it triggers CSCs apoptosis and completely eliminates the CSCs. In general, this review article aims to address the associations between miRNAs with mitochondrial activities in cancer cells and cancer stem cells that support cancer cell survival and self-renewal.
  11. Shah FLA, Baharum SN, Goh HH, Leow TC, Ramzi AB, Oslan SN, et al.
    Mol Biol Rep, 2023 Jun;50(6):5283-5294.
    PMID: 37148413 DOI: 10.1007/s11033-023-08417-1
    BACKGROUND: Chalcone isomerase (CHI; EC 5.5.1.6) is one of the key enzymes in the flavonoid biosynthetic pathway that is responsible for the intramolecular cyclization of chalcones into specific 2S-flavanones.

    METHODS AND RESULTS: In this study, the open reading frame (ORF) of CHI was successfully isolated from the cDNA of Polygonum minus at 711-bp long, encoding for 236 amino acid residues, with a predicted molecular weight of 25.4 kDa. Multiple sequence alignment and phylogenetic analysis revealed that the conserved residues (Thr50, Tyr108, Asn115, and Ser192) in the cleft of CHI enzyme group active site are present in PmCHI protein sequence and classified as type I. PmCHI comprises more hydrophobic residues without a signal peptide and transmembrane helices. The three-dimensional (3D) structure of PmCHI predicted through homology modeling was validated by Ramachandran plot and Verify3D, with values within the acceptable range of a good model. PmCHI was cloned into pET-28b(+) plasmid, expressed in Escherichia coli BL21(DE3) at 16 °C and partially purified.

    CONCLUSION: These findings contribute to a deeper understanding of the PmCHI protein and its potential for further characterization of its functional properties in the flavonoid biosynthetic pathway.

  12. Wan Afifudeen CL, Teh KY, Cha TS
    Mol Biol Rep, 2022 Feb;49(2):1475-1490.
    PMID: 34751914 DOI: 10.1007/s11033-021-06903-y
    In viral respiratory infections, disrupted pathophysiological outcomes have been attributed to hyper-activated and unresolved inflammation responses of the immune system. Integration between available drugs and natural therapeutics have reported benefits in relieving inflammation-related physiological outcomes and microalgae may be a feasible source from which to draw from against future coronavirus-infections. Microalgae represent a large and diverse source of chemically functional compounds such as carotenoids and lipids that possess various bioactivities, including anti-inflammatory properties. Therefore in this paper, some implicated pathways causing inflammation in viral respiratory infections are discussed and juxtaposed along with available research done on several microalgal metabolites. Additionally, the therapeutic properties of some known anti-inflammatory, antioxidant and immunomodulating compounds sourced from microalgae are reported for added clarity.
  13. Malik JA, Yaseen Z, Thotapalli L, Ahmed S, Shaikh MF, Anwar S
    Mol Biol Rep, 2023 Apr;50(4):3767-3785.
    PMID: 36692676 DOI: 10.1007/s11033-023-08241-7
    Schizophrenia affects millions of people worldwide and is a major challenge for the scientific community. Like most psychotic diseases, it is also considered a complicated mental disorder caused by an imbalance in neurotransmitters. Due to the complexity of neuropathology, it is always a complicated disorder. The lack of proper understanding of the pathophysiology makes the disorder unmanageable in clinical settings. However, due to recent advances in animal models, we hope we can have better therapeutic approaches with more success in clinical settings. Dopamine, glutamate, GABA, and serotonin are the neurotransmitters involved in the pathophysiology of schizophrenia. Various animal models have been put forward based on these neurotransmitters, including pharmacological, neurodevelopmental, and genetic models. Polymorphism of genes such as dysbindin, DICS1, and NRG1 has also been reported in schizophrenia. Hypothesis based on dopamine, glutamate, and serotonin are considered successful models of schizophrenia on which drug therapies have been designed to date. New targets like the orexin system, muscarinic and nicotinic receptors, and cannabinoid receptors have been approached to alleviate the negative and cognitive symptoms. The non-pharmacological models like the post-weaning social isolation model (maternal deprivation), the isolation rearing model etc. have been also developed to mimic the symptoms of schizophrenia and to create and test new approaches of drug therapy which is a breakthrough at present in psychiatric disorders. Different behavioral tests have been evaluated in these specific models. This review will highlight the currently available animal models and behavioral tests in psychic disorders concerning schizophrenia.
  14. Pung HS, Tye GJ, Leow CH, Ng WK, Lai NS
    Mol Biol Rep, 2023 May;50(5):4653-4664.
    PMID: 37014570 DOI: 10.1007/s11033-023-08380-x
    Cancer is one of the leading causes of mortality worldwide; nearly 10 million people died from it in 2020. The high mortality rate results from the lack of effective screening approaches where early detection cannot be achieved, reducing the chance of early intervention to prevent cancer development. Non-invasive and deep-tissue imaging is useful in cancer diagnosis, contributing to a visual presentation of anatomy and physiology in a rapid and safe manner. Its sensitivity and specificity can be enhanced with the application of targeting ligands with the conjugation of imaging probes. Phage display is a powerful technology to identify antibody- or peptide-based ligands with effective binding specificity against their target receptor. Tumour-targeting peptides exhibit promising results in molecular imaging, but the application is limited to animals only. Modern nanotechnology facilitates the combination of peptides with various nanoparticles due to their superior characteristics, rendering novel strategies in designing more potent imaging probes for cancer diagnosis and targeting therapy. In the end, a myriad of peptide candidates that aimed for different cancers diagnosis and imaging in various forms of research were reviewed.
  15. Ismail N, Myint K, Khaing SL, Giribabu N, Salleh N
    Mol Biol Rep, 2023 Aug;50(8):6729-6737.
    PMID: 37382776 DOI: 10.1007/s11033-023-08555-6
    BACKGROUND: Unexplained infertility could arise from a defect in the cervix. However, the contribution of abnormal cervical fluid microenvironment to this problem still needs to be identified. Therefore, this study identifies the changes in the cervical fluid microenvironment, i.e., pH, electrolytes and osmolarity as well as expression of ion transporters in the cervix including ENaC, CFTR and AQP in fertile women and in women suffering from primary unexplained infertility.

    METHODS: Fertile women and women with unexplained infertility but having regular 28-day menstrual cycles were chosen in this study, Day-22 serum progesterone levels were determined. In the meantime, serum FSH and LH levels were determined on day 2 while, cervical flushing was performed at day 14 to analyse changes in the cervical fluid pH, osmolarity, Na+ and Cl- levels. Meanwhile, cells retrieved from cervical fluid were subjected to mRNA expression and protein distribution analysis for CFTR, AQP and ENaC by qPCR and immunofluorescence, respectively.

    RESULTS: No significant changes in serum progesterone, FSH and LH levels were observed between the two groups. However, cervical fluid pH, osmolarity, Na+ and Cl- levels were significantly lower in primary unexplained infertile group when compared to fertile group. Expression of CFTR and AQP (AQP 1, AQP 2, AQP 5 and AQP 7) in endocervical cells was lower and expression of β-ENaC was higher in primary unexplained infertile women (p 

  16. Khan MMH, Rafii MY, Ramlee SI, Jusoh M, Al Mamun M, Kundu BC
    Mol Biol Rep, 2023 Sep;50(9):7619-7637.
    PMID: 37531035 DOI: 10.1007/s11033-023-08693-x
    BACKGROUND: A set of 44 selected Bambara groundnut (Vigna subterranea [L.] Verdc.) accessions was sampled from 11 distinct populations of four geographical zones to assess the genetic drift, population structure, phylogenetic relationship, and genetic differentiation linked with ISSR primers.

    METHODS AND RESULTS: The amplification of genomic DNA with 32 ISSR markers detected an average of 97.64% polymorphism while 35.15% and 51.08% polymorphism per population and geographical zone, respectively. Analysis of molecular variance revealed significant variation within population 75% and between population 25% whereas within region 84% and between region 16%. The Bidillali exposed greater number of locally common band i.e., NLCB (≤ 25%) = 25 and NLCB (≤ 50%) = 115 were shown by Cancaraki while the lowest was recorded as NLCB (≤ 25%) = 6 and NLCB (≤ 50%) = 72 for Roko and Maibergo, accordingly. The highest PhiPT value was noted between Roko and Katawa (0.405*) whereas Nei's genetic distance was maximum between Roko and Karu (0.124). Based on Nei's genetic distance, a radial phylogenetic tree was constructed that assembled the entire accessions into 3 major clusters for further confirmation unrooted NJ vs NNet split tree analysis based on uncorrected P distance exposed the similar result. Principal coordinate analysis showed variation as PC1 (15.04%) > PC2 (5.81%).

    CONCLUSIONS: The current study leads to prompting the genetic improvement and future breeding program by maximum utilization and better conservation of existing accessions. The accessions under Cancaraki and Jatau are population documented for future breeding program due to their higher genetic divergence and homozygosity.

  17. Azman AA, Siok-Fong C, Rajab NF, Md Zin RR, Ahmad Daud NN, Mohamad Hanif EA
    Mol Biol Rep, 2023 Sep;50(9):7909-7917.
    PMID: 37442895 DOI: 10.1007/s11033-023-08661-5
    Triple negative breast cancer (TNBC) is the most aggressive intrinsic breast cancer subtype characterized by the lack of estrogen receptor (ER), progesterone receptor (PR), and low levels of human epidermal growth factor receptor 2 (HER2). The complex nature of TNBC has resulted in little therapeutic progress for the past several decades. The standard of care remains the FEC cocktail (5-fluorouracil (5-FU), epirubicin and cyclophosphamide). However, early relapse and metastasis in TNBC patients persists in causing dismal clinical outcomes. Due to complex heterogeneity features of TNBC, identifying the biomarker associated to the chemoresistance remains a challenge. The emergence of the long non-coding RNA (lncRNA) as a potential signature may have proven to be a new deterrent to diagnostic and treatment options. Previous studies unveiled the associations of lncRNA in the development of TNBCs whereby the aggressiveness and response to therapies may be associated by the abrogation of the molecular mechanism lncRNA. Terminal differentiation induced ncRNA (TINCR) is a lncRNA which have been linked with many cancers including TNBC. The expression and behavior of TINCR may exert unfavorable outcome in TNBCs. Nevertheless, the underlying molecular mechanism of TINCR in driving chemoresistance in TNBC is not well understood. This review will highlight the potential molecular mechanisms of TINCR in TNBC chemoresistance and how it can serve as a future potential prognostic and therapeutic target for a better treatment intervention.
  18. Aroosa M, Malik JA, Ahmed S, Bender O, Ahemad N, Anwar S
    Mol Biol Rep, 2023 Sep;50(9):7667-7680.
    PMID: 37418080 DOI: 10.1007/s11033-023-08568-1
    Antiepileptic drugs are versatile drugs with the potential to be used in functional drug formulations with drug repurposing approaches. In the present review, we investigated the anticancer properties of antiepileptic drugs and interlinked cancer and epileptic pathways. Our focus was primarily on those drugs that have entered clinical trials with positive results and those that provided good results in preclinical studies. Many contributing factors make cancer therapy fail, like drug resistance, tumor heterogeneity, and cost; exploring all alternatives for efficient treatment is important. It is crucial to find new drug targets to find out new antitumor molecules from the already clinically validated and approved drugs utilizing drug repurposing methods. The advancements in genomics, proteomics, and other computational approaches speed up drug repurposing. This review summarizes the potential of antiepileptic drugs in different cancers and tumor progression in the brain. Valproic acid, oxcarbazepine, lacosamide, lamotrigine, and levetiracetam are the drugs that showed potential beneficial outcomes against different cancers. Antiepileptic drugs might be a good option for adjuvant cancer therapy, but there is a need to investigate further their efficacy in cancer therapy clinical trials.
  19. Mark JKK, Lim CSY, Nordin F, Tye GJ
    Mol Biol Rep, 2022 Nov;49(11):10593-10608.
    PMID: 35674877 DOI: 10.1007/s11033-022-07651-3
    BACKGROUND: Antibodies have proven to be remarkably successful for biomedical applications. They play important roles in epidemiology and medicine from diagnostics of diseases to therapeutics, treating diseases from incessant chronic diseases such as rheumatology to pandemic outbreaks. With no end in sight for the demand for antibody products, optimizations and new techniques must be expanded to accommodate this.

    METHODS AND RESULTS: This review discusses optimizations and techniques for antibody production through choice of discovery platforms, expression systems, cell culture mediums, and other strategies to increase expression yield. Each system has its own merits and demerits, and the strategy chosen is critical in addressing various biological aspects.

    CONCLUSIONS: There is still insufficient evidence to validate the efficacy of some of these techniques, and further research is needed to consolidate these industrial production systems. There is no doubt that more strategies, systems, and pipelines will contribute to enhance biopharmaceutical production.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links