Displaying publications 81 - 100 of 124 in total

Abstract:
Sort:
  1. Kuppusamy P, Govindan N, Yusoff MM, Ichwan SJA
    Saudi J Biol Sci, 2017 Sep;24(6):1212-1221.
    PMID: 28855814 DOI: 10.1016/j.sjbs.2014.09.017
    Colon cancer is the most common type of cancer and major cause of death worldwide. The detection of colon cancer is difficult in early stages. However, the secretory proteins have been used as ideal biomarker for the detection of colon cancer progress in cancer patients. Serum/tissue protein expression could help general practitioners to identify colon cancer at earlier stages. By this way, we use the biomarkers to evaluate the anticancer drugs and their response to therapy in cancer models. Recently, the biomarker discovery is important in cancer biology and disease management. Also, many measurable specific molecular components have been studied in colon cancer therapeutics. The biomolecules are mainly DNA, RNA, metabolites, enzymes, mRNA, aptamers and proteins. Thus, in this review we demonstrate the important protein biomarker in colon cancer development and molecular identification of protein biomarker discovery.
  2. Al-Shorgani NKN, Kalil MS, Yusoff WMW, Hamid AA
    Saudi J Biol Sci, 2018 Feb;25(2):339-348.
    PMID: 29472788 DOI: 10.1016/j.sjbs.2017.03.020
    The effect of pH and butyric acid supplementation on the production of butanol by a new local isolate of Clostridium acetobutylicum YM1 during batch culture fermentation was investigated. The results showed that pH had a significant effect on bacterial growth and butanol yield and productivity. The optimal initial pH that maximized butanol production was pH 6.0 ± 0.2. Controlled pH was found to be unsuitable for butanol production in strain YM1, while the uncontrolled pH condition with an initial pH of 6.0 ± 0.2 was suitable for bacterial growth, butanol yield and productivity. The maximum butanol concentration of 13.5 ± 1.42 g/L was obtained from cultures grown under the uncontrolled pH condition, resulting in a butanol yield (YP/
    S
    ) and productivity of 0.27 g/g and 0.188 g/L h, respectively. Supplementation of the pH-controlled cultures with 4.0 g/L butyric acid did not improve butanol production; however, supplementation of the uncontrolled pH cultures resulted in high butanol concentrations, yield and productivity (16.50 ± 0.8 g/L, 0.345 g/g and 0.163 g/L h, respectively). pH influenced the activity of NADH-dependent butanol dehydrogenase, with the highest activity obtained under the uncontrolled pH condition. This study revealed that pH is a very important factor in butanol fermentation by C. acetobutylicum YM1.
  3. Seah CS, Kasim S, Fudzee MFM, Law Tze Ping JM, Mohamad MS, Saedudin RR, et al.
    Saudi J Biol Sci, 2017 Dec;24(8):1828-1841.
    PMID: 29551932 DOI: 10.1016/j.sjbs.2017.11.024
    Microarray technology has become one of the elementary tools for researchers to study the genome of organisms. As the complexity and heterogeneity of cancer is being increasingly appreciated through genomic analysis, cancerous classification is an emerging important trend. Significant directed random walk is proposed as one of the cancerous classification approach which have higher sensitivity of risk gene prediction and higher accuracy of cancer classification. In this paper, the methodology and material used for the experiment are presented. Tuning parameter selection method and weight as parameter are applied in proposed approach. Gene expression dataset is used as the input datasets while pathway dataset is used to build a directed graph, as reference datasets, to complete the bias process in random walk approach. In addition, we demonstrate that our approach can improve sensitive predictions with higher accuracy and biological meaningful classification result. Comparison result takes place between significant directed random walk and directed random walk to show the improvement in term of sensitivity of prediction and accuracy of cancer classification.
  4. Izhar Ariff Mohd Kashim M, Abdul Haris AA, Abd Mutalib S, Anuar N, Shahimi S
    Saudi J Biol Sci, 2023 Jan;30(1):103501.
    PMID: 36466219 DOI: 10.1016/j.sjbs.2022.103501
    Cultured meat is meat produced from stem cell biopsies of cattle. Stem cells were cultured in a bioreactor in the presence of serum to grow the flesh to maturity. Cultured meat technology originated from regenerative medical technology; however, it has been given a new lease of life to produce cultured meat as an innovative food source in the future without involving cattle breeding. This technology can reduce the negative environmental impacts of global warming, water use, soil, and unethical handling of animals. In the excitement of accepting this new technology, the halal status of cultured meat is in question, as it can be produced from embryonic stem cells and myosatellite cells, each of which can be disputed for their halal status. Additionally, the process of culturing and maturation of stem cells involves the use of an impure medium derived from animal blood. Thus, cultured meat is acceptable to Muslims only if the stem cells, medium and scaffold biomaterials used to manufacture it are from Halal sources and shall be in line with the six principles discussed in this study. The discussion is based on Halal and haram animals; Animal slaughtering; Not derived from a source of najs (impurity); Istihalah tammah (perfect substance change); Maslahah (public interest or benefit) and mafsadah (damage); and Darurat (exigency) of cultured meat)).
  5. Salam MA, Al-Amin MY, Pawar JS, Akhter N, Lucy IB
    Saudi J Biol Sci, 2023 Mar;30(3):103582.
    PMID: 36852413 DOI: 10.1016/j.sjbs.2023.103582
    Antimicrobial susceptibility testing is an essential task for selecting appropriate antimicrobial agents to treat infectious diseases. Constant evolution has been observed in methods used in the diagnostic microbiology laboratories. Disc diffusion or broth microdilution are classical and conventional phenotypic methods with long turnaround time and labour-intensive but still widely practiced as gold-standard. Scientists are striving to develop innovative, novel and faster methods of antimicrobial susceptibility testing to be applicable for routine microbiological laboratory practice and research. To meet the requirements, there is an increasing trend towards automation, genotypic and micro/nano technology-based innovations. Automation in detection systems and integration of computers for online data analysis and data sharing are giant leaps towards versatile nature of automated methods currently in use. Genotypic methods detect a specific genetic marker associated with resistant phenotypes using molecular amplification techniques and genome sequencing. Microfluidics and microdroplets are recent addition in the continuous advancement of methods that show great promises with regards to safety and speed and have the prospect to identify and monitor resistance mechanisms. Although genotypic and microfluidics methods have many exciting features, however, their applications into routine clinical laboratory practice warrant extensive validation. The main impetus behind the evolution of methods in antimicrobial susceptibility testing is to shorten the overall turnaround time in obtaining the results and to enhance the ease of sample processing. This comprehensive narrative review summarises major conventional phenotypic methods and automated systems currently in use, and highlights principles of some of the emerging genotypic and micro/nanotechnology-based methods in antimicrobial susceptibility testing.
  6. Kura Shehu I, Ahmad HB, Kayode Olayemi I, Solomon D, Hassan Ahmad A, Salim H
    Saudi J Biol Sci, 2023 Feb;30(2):103524.
    PMID: 36660609 DOI: 10.1016/j.sjbs.2022.103524
    High resistance ability on insecticides among major mosquito vectors of diseases in Nigeria is of growing concern for severe control strategies. The objective of this study was to assess the susceptibility status of females Anopheles gambiae and Culex quinquefasciatus complexes mosquitoes to permethrin (21.5 μg/bottle-pyrethroids), propoxur(12.5 μg/bottle-carbamate) and malathion (50 μg/bottle organophosphate), in Niger State, North-Central, Nigeria. Anopheline and Culecine larvae were collected from the larval habitats of the studied sites (Bosso, Katcha, Lapai, and Shiroro) larvae and pupae were identified guided by standard keys and reared to adults in troughs. Insecticide susceptibility bioassays were performed according to the CDC bottle bioassay standard operating procedures on 3 days old, sugar-fed female Anopheles and Culex mosquitoes. Post-exposure mortality after 24hr and knockdown values for KDT50 were calculated. Knock-down at 1-hour insecticide exposure ranged (84-96 %) permethrin, (94-100 %) propoxur and (100 %) malathion for An. gambiae and (86-97 %) permethrin, (92-100 %) propoxur and (96-100 %) malathion for Cx. quinquefasciatus. Mortality, after 24hr post-exposure was 100 % in malathion, indicating the high effect of the insecticide. Tested samples were found potentially resistant to permethrin recorded against mosquitoes collected from all study sites, in two locations of the study sites to propoxur and one location site to malathion. All the tested mosquitoes were found to be potentially resistant to permethrin, however, mosquitoes tested in Katcha and Shiroro resist potentially to propoxur. Except, Culex quinqufasciatus from Lapai that partially resist malathion, all the tested mosquitoes were found to be susceptible to malathion, across the study sites.
  7. Mailafiya MM, Abubakar K, Chiroma SM, Danmaigoro A, Rahim EBA, Mohd Moklas MA, et al.
    Saudi J Biol Sci, 2020 Jun;27(6):1538-1552.
    PMID: 32489292 DOI: 10.1016/j.sjbs.2020.03.009
    Lead (Pb) toxicity affects the hepatic and renal systems resulting to homeostasis imbalance. Curcumin is a strong antioxidant but has restrained clinical applications due to its poor bioavailability. Nanomedicine showed promising potentials in drug delivery and has brought forth the use of cockle shell-derived aragonite calcium carbonate nanoparticles (CSCaCO3NP) to enhance the effectiveness and targeted delivery of curcumin (Cur). Thus, this study aimed at evaluating the therapeutic effect of curcumin-loaded CSCaCO3NP (Cur- CSCaCO3NP) on lead-induced hepato-renal toxicity in rats. Thirty-six male adults Sprague-Dawley rats were randomly assigned into five groups. All groups contained six rats each except for group A, which contained 12 rats. All rats apart from the rats in group A (control) were orally administered a flat dose of 50 mg/kg of lead for four weeks. Six rats from group A and B were euthanized after four weeks of lead induction. Oral administration of curcumin (100 mg/kg) for group C and Cur-CSCaCO3NP (50 and 100 mg/kg) for groups D and E respectively, commenced immediately after 4 weeks of lead induction which lasted for 4 weeks. All rats were euthanized at the 8th week of the experiment. Further, biochemical, histological and hematological analysis were performed. The findings revealed a biochemical, hematological and histological changes in lead-induced rats. However, treatments with the Cur-CSCaCO3NP and free curcumin reversed the aforementioned changes. Although, Cur-CSCaCO3NP presented better therapeutic effects on lead-induced toxicity in rats when compared to free curcumin as there was significant improvements in hematological, biochemical and histological changes which is parallel with attenuation of oxidative stress. The findings of the current study hold great prospects for Cur-CSCaCO3NP as a novel approach for effective oral treatment of lead-induced hepato-renal impairments.
  8. Ali Alghamdi B, Al-Johani I, Al-Shamrani JM, Musamed Alshamrani H, Al-Otaibi BG, Almazmomi K, et al.
    Saudi J Biol Sci, 2023 Apr;30(4):103604.
    PMID: 36936699 DOI: 10.1016/j.sjbs.2023.103604
    In the medical community, antibiotics are revered as a miracle because they stop diseases brought on by pathogenic bacteria. Antibiotics have become the cornerstone of contemporary medical advancements ever since penicillin was discovered. Antibiotic resistance developed among germs quickly, placing a strain in the medical field. Methicillin-resistant Staphylococcus aureus (MRSA), Since 1961, has emerged as the major general antimicrobial resistant bacteria (AMR) worldwide. MRSA can easily transmit across the hospital system and has mostly gained resistance to medications called beta-lactamases. This enzyme destroys the cell wall of beta-lactam antibiotics resulting in resistance against that respective antibiotic. Daptomycin, linezolid and vancomycin were previously used to treat MRSA infections. However, due to mutations and Single nucleotide polymorphisms (SNPs) in Open reading frames (ORFs) and SCCmec machinery of respective antibody, MRSA developed resistance against those antibiotics. The MRSA strains (USA300, CC398, CC130 etc.), when their pan-genomes were analyzed were found the genes involved in invoking resistance against the antibiotics as well as the epidemiology of that respective strain. PENC (penicillin plus potassium clavulanate) is the new antibiotic showing potential in treatment of MRSA though it is itself resistant against penicillin alone. In this review, our main focus is on mechanism of development of AMR in MRSA, how different ORFs are involved in evoking resistance in MRSA and what is the core-genome of different antimicrobial resistant MRSA.
  9. Ahmed SI, Jamil S, Ismatullah H, Hussain R, Bibi S, Khandaker MU, et al.
    Saudi J Biol Sci, 2023 Mar;30(3):103561.
    PMID: 36684115 DOI: 10.1016/j.sjbs.2023.103561
    COVID-19 is a pulmonary disease caused by SARS-CoV-2. More than 200 million individuals are infected by this globally. Pyrexia, coughing, shortness of breath, headaches, diarrhoea, sore throats, and body aches are among the typical symptoms of COVID-19. The virus enters into the host body by interacting with the ACE2 receptor. Despite many SARS-CoV-2 vaccines manufactured by distinct strategies but any evidence-based particular medication to combat COVID-19 is not available yet. However, further research is required to determine the safety and effectiveness profile of the present therapeutic approaches. In this study, we provide a summary of Traditional Arabic or Islamic medicinal (TAIM) plants' historical use and their present role as adjuvant therapy for COVID-19. Herein, six medicinal plants Aloe barbadensis Miller, Olea europaea, Trigonella foenum-graecum, Nigella sativa, Cassia angustifolia, and Ficus carica have been studied based upon their pharmacological activities against viral infections. These plants include phytochemicals that have antiviral, immunomodulatory, antiasthmatic, antipyretic, and antitussive properties. These bioactive substances could be employed to control symptoms and enhance the development of a possible COVID-19 medicinal synthesis. To determine whether or if these TAIMs may be used as adjuvant therapy and are appropriate, a detailed evaluation is advised.
  10. Ali F, Zeb M, Amin M, Rajpar MN, Hidayat S, Khan WR
    Saudi J Biol Sci, 2024 May;31(5):103983.
    PMID: 38590389 DOI: 10.1016/j.sjbs.2024.103983
    Himalayan 'Ecotone' temperate conifer forest is the cradle of life for human survival and wildlife existence. In spite of the importance of these areas, they have not been studied in depth. This study aimed to quantify the floristic structure, important value index (IVI), topographic and edaphic variables between 2019 and 2020 utilizing circular quadrant method (10 m x 10 m). The upper-storey layer consisted of 17 tree species belongs to 12 families and 9 orders. Middle-storey shrubs comprised of 23 species representing 14 families and 12 orders. A total of 43 species of herbs, grasses, and ferns were identified from the ground-storey layer, representing 25 families and 21 orders. Upper-storey vegetation structure was dominated by Pinus roxburghii (22.45 %) and middle-storey by Dodonaea viscosa (7.69 %). However, the ground layer vegetation was diverse in species composition (43 species) and distribution. The floral vegetation structure was encompassing of three floral communities which were diverse in IVI, such as, in Piro-Aial (Group 2), Pinus roxburghii (54.46 x 15.94) had the highest IVI value, followed by Pinus wallichiana (45.21 x 14.85) in Piwa-Quin (Group 3) and Ailanthus altissima (22.84 x 19.25) in Aial-Qugal (Group 1). However, the IVI values for Aesculus indica, Celtis australis, and Quercus incana in Aial-Qugal (Group 1) were not determined due to low detection rate. Nevertheless, eleven of these species showed 0 IVI values in Piro-Aial (Group 2) and Piwa-Quin (Group 3). CCA ordination biplot illustrated the significant differences among floral communities and its distribution, which impacted by temperature, rainfall, soil pH, altitude, and topographic features. Ward's agglomerative clustering finding reflected 'Ecotone' temperate conifer forest is rich and diverse floristic structure.
  11. Sam-On MFS, Mustafa S, Yusof MT, Mohd Hashim A, Ku Aizuddin KNA
    Saudi J Biol Sci, 2024 Aug;31(8):104046.
    PMID: 38983130 DOI: 10.1016/j.sjbs.2024.104046
    Chili, renowned globally and deeply ingrained in various cultures. Regrettably, the onset of diseases instigated by pests and pathogens has inflicted substantial losses on chili crops, with some farms experiencing complete production decimation. Challenges confronting chili cultivation include threats from pathogenic microbes like Xanthomonas, Fusarium, Phytophthora, Verticillium, Rhizoctonia, Colletotrichium and Viruses, alongside pests such as whiteflies, mites, thrips, aphids, and fruit flies. While conventional farming practices often resort to chemical pesticides to combat these challenges, their utilization poses substantial risks to both human health and the environment. In response to this pressing issue, this review aims to evaluate the potential of microbe-based biological control as eco-friendly alternatives to chemical pesticides for chili cultivation. Biocontrol agents such as Bacillus spp., Trichoderma spp., and entomopathogenic fungi present safer and more environmentally sustainable alternatives to chemical pesticides. However, despite the recognised potential of biocontrol agents, research on their efficacy in controlling the array of pests and pathogens affecting chili farming remains limited. This review addresses this gap by evaluating the efficiency of biocontrol agents, drawing insights from existing studies conducted in other crop systems, regarding pest and pathogen management. Notably, an analysis of Scopus publications revealed fewer than 30 publications in 2023 focused on these three microbial agents. Intriguingly, India, as the world's largest chili producer, leads in the number of publications concerning Bacillus spp., Trichoderma spp., and entomopathogenic fungi in chili cultivation. Further research on microbial agents is imperative to mitigate infections and reduce reliance on chemical pesticides for sustainable chili production.
  12. Al-Shorgani NKN, Shukor H, Abdeshahian P, Kalil MS, Yusoff WMW, Hamid AA
    Saudi J Biol Sci, 2018 Nov;25(7):1308-1321.
    PMID: 30505175 DOI: 10.1016/j.sjbs.2016.02.017
    A new isolate of the solvent-producing Clostridium acetobutylicum YM1 was used to produce butanol in batch culture fermentation. The effects of glucose concentration, butyric acid addition and C/N ratio were studied conventionally (one-factor-at-a-time). Moreover, the interactions between glucose concentration, butyric acid addition and C/N ratio were further investigated to optimize butanol production using response surface methodology (RSM). A central composite design was applied, and a polynomial regression model with a quadratic term was used to analyze the experimental data using analysis of variance (ANOVA). ANOVA revealed that the model was highly significant (p 
  13. Amir M, Yimer N, Hiew M, Yusoff SM, Hussen B, Quddus A
    Saudi J Biol Sci, 2023 Dec;30(12):103837.
    PMID: 37964780 DOI: 10.1016/j.sjbs.2023.103837
    BACKGROUND: This study aimed to determine the effects of Indomethacin (IMC) treatment on embryo implantation and histomorphology of uterus, ovary, and other vital organs and its effective dosage in establishing embryo implantation dysfunction model in Sprague-Dawley (SD) rats.

    MATERIALS AND METHODS: The experiments were performed on 24 (6 × 4 groups) adult female SD rats aged 12 weeks old. G1 was the control group and received a normal diet with normal saline. However, on pregnancy days 3 (Pd3) and 4 (Pd4), G2, G3, and G4 were given normal saline and subcutaneously administered IMC twice daily at different doses of 4.33, 4.66 and 5.00 mg/kg body weight, respectively. The rats were euthanized on day 8 of pregnancy (Pd8). The uterus was excised and examined for signs of pregnancy, followed by tissue samples from liver, kidney, and ovary (for histomorphological examination using haematoxylin and eosin stain).

    RESULTS: All IMC treatment doses disrupted the implantation process and caused a significant reduction in embryo development. Analysis for histopathological changes revealed that IMC doses above 4.33 mg/kg body weight caused more adverse reproductive health effects in rats. Vasoconstriction and micro vascularization were detected in the liver, while degenerative Bowman's capsules and inflammatory cells were observed in kidney sections from IMC-treated rats.

    CONCLUSION: IMC therapy interfered with implantation and embryo development in rats, resulting in significant uterine vasoconstriction and atrophy, 4.33 mg/kg bwt dose appeared to be optimum to establish embryo implantation dysfunction in SD rats.

  14. Abubakar Bobbo K, Ahmad U, Chau DM, Nordin N, Abdullah S
    Saudi J Biol Sci, 2023 Jul;30(7):103685.
    PMID: 37313453 DOI: 10.1016/j.sjbs.2023.103685
    Cystic fibrosis (CF) was earlier thought to be a disease prevalent in the West among Caucasians. However, quite a number of recent studies have uncovered CF cases outside of this region, and reported hundreds of unique and novel variant forms of CFTR. Here, we discuss the evidence of CF in parts of the world earlier considered to be rare; Africa, and Asia. This review also highlighted the CFTR mutation variations and new mutations discovered in these regions. This discovery implies that the CF data from these regions were earlier underestimated. The inadequate awareness of the disease in these regions might have contributed towards the poor diagnostic facilities, under-diagnosis or/and under-reporting, and the lack of CF associated health policies. Overall, these regions have a high rate of infant, childhood and early adulthood mortality due to CF. Therefore, there is a need for a thorough investigation of CF prevalence and to identify unique and novel variant mutations within these regions in order to formulate intervention plans, create awareness, develop mutation specific screening kits and therapies to keep CF mortality at bay.
  15. Ibrahim RA, Aizam NAH, Liew HJ, Din NS, Mubarak A
    Saudi J Biol Sci, 2023 Nov;30(11):103834.
    PMID: 37885611 DOI: 10.1016/j.sjbs.2023.103834
    Expensive aquafeed is a major problem in aquaculture, creating the need for a low-cost feed that provides ideal nutritional requirement to maximize growth performances. This study aims to formulate and evaluate two new optimized Zebrafish feeds (F1 and F2) using linear programming mathematical model, one of which incorporates two pigment rich fruit wastes (Pitaya peel and Roselle calyx) in the formulation. The model represents nutritional content and cost of each ingredient into linear equations, with the goal of finding ideal combination that satisfies the specific nutrient requirements. By systematically evaluating ingredient proportions, linear programming ensures that Zebrafish receives adequate nutrients at the lowest possible cost, making the feed development process more efficient and cost-effective. The novel feed formulations derived from the mathematical model were tested on the growth and pigmentation of Zebrafish in comparison to a commercial feed (control). Feed intake of F1 and F2 were generally found to be similar to the control feed, indicating the acceptability of the formulated feeds by the Zebrafish. Body weight and length of Zebrafish fed with F1 and F2 were comparable to Zebrafish fed with control feed (p > 0.05). Similarly, Zebrafish fed with F1 and F2 showed no significant differences in pigment intensity compared to Zebrafish fed with control feed (p > 0.05). The survival rate of fishes in all feeding groups were greater than 70 % with no significant differences (p > 0.05). Results obtained in this study illustrated the potential of mathematic linear programming and effectiveness of utilising pigment-rich fruit wastes in formulating an optimized economic aquafeed.
  16. Ahmed IA, Mikail MA, Mustafa MR, Ibrahim M, Othman R
    Saudi J Biol Sci, 2019 Nov;26(7):1519-1524.
    PMID: 31762620 DOI: 10.1016/j.sjbs.2018.12.016
    Non-alcoholic fatty liver disease (NAFLD) is a multi-factorial disease and the most common of chronic liver diseases worldwide. The four clinical-pathological entities which are usually followed by NAFLD course include non-alcoholic steatosis, non-alcoholic steatohepatitis, advanced fibrosis/cirrhosis, and hepatocellular carcinoma. The cornerstones of NAFLD management and treatment, however, are healthy lifestyles such as dietary modifications, regular physical activity, and gradual weight loss. At present, no drugs or pharmacological agents have been approved for long-term treatment of NAFLD. Therefore, lifestyle modification is considered the main clinical recommendation and an initial step for the management of NAFLD.
  17. Firdous SM, Hazra S, Gopinath SCB, El-Desouky GE, Aboul-Soud MAM
    Saudi J Biol Sci, 2021 Jan;28(1):109-115.
    PMID: 33424287 DOI: 10.1016/j.sjbs.2020.08.040
    The aim of this study was to investigate the antihyperlipidemic potential of Diosmin (DS) in mice fed with a high-fat diet (HFD). Animals were divided in five groups (n = 6). The total duration of the study was 90 days split into two intervals. During the first 45-day interval, mice were administered with HFD, whereas during the second 45-day interval they were co-administered HFD plus DS or the standard drug atorvastatin. DS was administered at the dose of 100 and 200 mg/kg;p.o. DS treatment to HFD-induced hyperlipidemic mice caused significant decrements in the levels of total cholesterol, triglycerides, LDL-C and VLDL-C. Moreover, DS resulted in significant increase in the levels of HDL-C and improvements in total protein levels, whereas it caused remarkable decreases in SGOT, SGPT and ALP enzymatic activities in hyperlipidemic mice. Histopathological examination of hyperlipidemic mice revealed a disorganized hepatic tissue, fatty changes, and mononuclear cell infiltration, which were all ameliorated by DS administration. The results revealed that DS possesses potential ameliorating benefits again.st hyperlipidemia induced by HFD on lipid profile, liver function enzymes and hepatic histoarchitecture. Further investigations are highly recommended and clinical trials are warranted in order to assess the efficacy and to fully dissect the mode-of-action underpinning the observed antihyperlipidemic effect of DS.
  18. Ali NANG, Abdullah ML, Nor SAM, Pau TM, Kulaimi NAM, Naim DM
    Saudi J Biol Sci, 2021 Jan;28(1):10-26.
    PMID: 33424278 DOI: 10.1016/j.sjbs.2020.08.024
    Genus Rusa, belonging to the deer family Cervidae is native to the Indo-Malaya Archipelago (IMA). However, detailed information on the Rusa genus in the IMA is limited. This review provides comprehensive information on the Rusa genus in the IMA including, threats and conservation efforts. There are four species of deer in Rusa genus, which is Sambar deer (Rusa unicolor), Javan deer (Rusa timorensis), Visayan spotted deer (Rusa alfredi) and Philippine deer (Rusa marianna). Despite their wide distribution in the South Asian and Southeast Asian regions, they are under serious threats. Some conservation efforts that are being done to protect and conserve them among others are; (1) facilities protection, (2) habitat enrichment programme, (3) Ex-situ conservation, (4) legislations, and (5) captive breeding. Conservation through genetics is also an important step in conserving these species. Recommendations for conservation of the genus are also discussed; 1. maintenance of ecosystem. 2. more effective monitoring system on the existing protected area. 3. ex-situ conservation, and 4. habitat monitoring.
  19. Ahmed MA, Al-Kahtani HA, Jaswir I, AbuTarboush H, Ismail EA
    Saudi J Biol Sci, 2020 Jun;27(6):1596-1601.
    PMID: 32489300 DOI: 10.1016/j.sjbs.2020.03.022
    Gelatin is used as an ingredient in both food and non-food industries as a gelling agent, stabilizer, thickener, emulsifier, and film former. Porcine skins, bovine hides, and cattle bones are the most common sources of gelatin. However, mammalian gelatins are rejected by some consumers due to social, cultural, religious, or health-related concerns. In the present study, gelatin was obtained from camel skin as an alternative source using a combination of processing steps. Central composite design combined with response surface methodology was used to achieve high gelatin yields under different extraction conditions: temperatures of 40, 60, and 80 °C; pH values of 1, 4, and 7; and extraction times of 0.5, 2.0, and 3.5 min. Maximum gelatin yield from camel skin (29.1%) was achieved at 71.87 °C and pH 5.26 after 2.58 min. The extracted gelatin samples were characterized for amino acid profile, foaming capacity, film formation, foam stability, and gel strength (Bloom value). Gelatin nanoparticles were produced, and their morphology and zeta potential were determined. Bloom value of the camel skin gelatin was 340 g. Amino acid analysis revealed that the extracted gelatin showed high glycine and proline contents. Analysis of camel skin gelatin nanoparticle and functional properties revealed high suitability for food and non-food applications, with potential use in the growing global halal food market.
  20. Wan-Norafikah O, Nazni WA, Lee HL, Zainol-Ariffin P, Sofian-Azirun M
    Saudi J Biol Sci, 2013 Jul;20(3):241-50.
    PMID: 23961241 DOI: 10.1016/j.sjbs.2013.02.001
    The resistance status towards permethrin among the laboratory strain, the permethrin-selected strain and four field strains of Culex quinquefasciatus collected in Kuala Lumpur, Malaysia was determined using three standard laboratory methods: WHO larval bioassay, WHO adult bioassay and biochemical microplate assay. Cx. quinquefasciatus permethrin-selected strain larvae were the least susceptible to permethrin with a resistance ratio of 47.28-folds, whereas all field strain larvae of the same species were tolerant to permethrin with resistance ratios of more than 3-folds. In contrast, in adult stage, the permethrin exposed permethrin-selected strain (resistance ratio = 1.27) was found to be more susceptible to permethrin than all permethrin-exposed field strains (resistance ratios = 2.23-2.48). Complete mortalities for all strains of Cx. quinquefasciatus adults proved the effectiveness of the synergist; piperonyl butoxide (PBO). For the biochemical microplate assay, the reduction of the mean optical density of elevated oxidase activity of three field strains upon exposure to PBO confirmed the association between oxidase activity and permethrin tolerance. On the other hand, irregular patterns of the mean optical density of elevated oxidase activity in the laboratory strain, permethrin-selected strain and Jalan Fletcher strain illustrated the gene variation within these mosquito colonies as well as the involvement of other enzyme activities in the permethrin resistance occurred.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links