Displaying publications 81 - 84 of 84 in total

Abstract:
Sort:
  1. Salahshourifar I, Halim AS, Wan Sulaiman WA, Zilfalil BA
    J Hum Genet, 2011 Nov;56(11):755-8.
    PMID: 21866112 DOI: 10.1038/jhg.2011.95
    Oral clefts are clinically and genetically heterogeneous disorders that are influenced by both genetic and environmental factors. The present family-based association study investigated the role of the MSX1 and TGFB3 genes in the etiology of non-syndromic oral cleft in a Malay population. No transmission distortion was found in the transmission disequilibrium analysis for either MSX1-CA or TGFB3-CA intragenic markers, whereas TGFB3-CA exhibited a trend to excess maternal transmission. In sequencing the MSX1 coding regions in 124 patients with oral cleft, five variants were found, including three known variants (A34G, G110G and P147Q) and two novel variants (M37L and G267A). The P147Q and M37L variants were not observed in 200 control chromosomes, whereas G267A was found in one control sample, indicating a very rare polymorphic variant. Furthermore, the G110G variant displayed a significant association between patients with non-syndromic cleft lip, with or without cleft palate, and normal controls (P=0.001, odds ratio=2.241, 95% confidence interval, 1.357-3.700). Therefore, these genetic variants may contribute, along with other genetic and environmental factors, to this condition.
    Matched MeSH terms: Cleft Palate/genetics*
  2. Salahshourifar I, Halim AS, Sulaiman WA, Ariffin R, Naili Muhamad Nor N, Zilfalil BA
    Cytogenet Genome Res, 2011;134(2):83-7.
    PMID: 21447942 DOI: 10.1159/000325541
    Microdeletion of the Van der Woude syndrome (VWS) critical region is a relatively rare event, and only a few cases have been reported in the medical literature. The extent of the deletion and the genotype-phenotype correlation are 2 crucial issues.
    Matched MeSH terms: Cleft Palate/genetics
  3. Salahshourifar I, Halim AS, Sulaiman WA, Zilfalil BA
    Am J Med Genet A, 2010 Jul;152A(7):1818-21.
    PMID: 20583164 DOI: 10.1002/ajmg.a.33526
    We describe a chromosome 6 uniparental disomy (UPD6) in a boy, discovered during a screening for the genetic cause of cleft lip and palate. In the medical literature, almost all documented cases of UPD6 are paternal in origin, and only four were maternal. We present here a report of complete maternal chromosome 6 uniparental heterodisomy. Haplotype analysis was performed using highly polymorphic short tandem repeat (STR) markers that span both arms of chromosome 6. Analysis of these markers revealed the presence of two maternal alleles but no paternal allele, indicating an instance of maternal uniparental heterodisomy. Chromosome analysis of peripheral blood lymphocytes confirmed a normal male karyotype. Advanced maternal age at the time of the infant's birth and heterodisomy of markers around the centromere favors a meiosis-I error. No specific phenotype has been reported for maternal UPD6. Therefore, the cleft lip and palate in the present case probably occurred due to other risk factors. This report provides further evidence that maternal UPD6 has no specific clinical consequences and adds to the collective knowledge of this rare chromosomal finding.
    Matched MeSH terms: Cleft Palate/genetics*
  4. Salahshourifar I, Halim AS, Sulaiman WA, Zilfalil BA
    J Dent Res, 2011 Mar;90(3):387-91.
    PMID: 21297019 DOI: 10.1177/0022034510391798
    Non-syndromic cleft lip, with or without cleft palate, is a heterogeneous, complex disease with a high incidence in the Asian population. Several association studies have been done on cleft candidate genes, but no reports have been published thus far on the Orofacial Cleft 1 (OFC1) genomic region in an Asian population. This study investigated the association between the OFC1 genomic region and non-syndromic cleft lip with or without cleft palate in 90 Malay father-mother-offspring trios. Results showed a preferential over-transmission of a 101-bp allele of marker D6S470 in the allele- and haplotype-based transmission disequilibrium test (TDT), as well as an excess of maternal transmission. However, no significant p-value was found for a maternal genotype effect in a log-linear model, although single and double doses of the 101-bp allele showed a slightly increased cleft risk (RR = 1.37, 95% CI, 0.527-3.4, p-value = 0.516). Carrying two copies of the 101-bp allele was significantly associated with an increased cleft risk (RR = 2.53, 95% CI, 1.06-6.12, p-value = 0.035). In conclusion, we report evidence of the contribution of the OFC1 genomic region to the etiology of clefts in a Malay population.
    Matched MeSH terms: Cleft Palate/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links