Displaying publications 81 - 82 of 82 in total

Abstract:
Sort:
  1. Mah SH, Sundrasegaran S, Lau HLN
    J Oleo Sci, 2024;73(4):489-502.
    PMID: 38556283 DOI: 10.5650/jos.ess23197
    Skincare industries are growing rapidly around the globe but most products are formulated using synthetic chemicals and organic solvent extracted plant extracts, thus may be hazardous to the users and incur higher cost for purification that eventually leads to phytonutrient degradation. Therefore, this study aimed to formulate a stable natural formulation with antioxidant and antimicrobial activities by using supercritical carbon dioxide (SC-CO 2 ) extracted palm-pressed fiber oil (PPFO) as an active ingredient with virgin coconut oil (VCO) as a formulation base. PPFO was extracted from fresh palm-pressed fiber (PPF) while VCO was from dried grated coconut copra using SC-CO 2 before being subjected to the analyses of physicochemical properties, phytonutrient content and biological activities including antioxidant and antimicrobial. The nanoemulgel formulations were then developed and examined for their stability through accelerated stability study for 3 months by measuring their pH, particle size, polydispersity index and zeta potential. The results showed that PPFO contained a high amount of phytonutrients, especially total carotenoid (1497 ppm) and total tocopherol and tocotrienol (2269 ppm) contents. The newly developed nanoemulgels maintained their particles in nano size and showed good stability with high negative zeta potentials. Sample nanoemulgel formulated with 3% PPFO diluted in VCO as effective concentration showed significantly stronger antioxidant activity than the control which was formulated from 3% tocopheryl acetate diluted in mineral oil, towards DPPH and ABTS radicals, with IC 50 values of 67.41 and 44.28 µL/mL, respectively. For the antibacterial activities, the sample nanoemulgel was found to inhibit Gram positive bacteria S. aureus and S. epidermidis growth but not the Gram negative strain E. coli. Overall, this study revealed the potential of SF-extracted PPFO as an active ingredient in the antioxidant topical formulations thus future study on in vitro skin cell models is highly recommended for validation.
    Matched MeSH terms: Emulsions/chemistry
  2. Yu H, Zheng Y, Zhou C, Liu L, Wang L, Cao J, et al.
    Carbohydr Polym, 2024 Feb 01;325:121583.
    PMID: 38008470 DOI: 10.1016/j.carbpol.2023.121583
    The potential of ultrasonication-driven molecular self-assembly of whey protein isolate (WPI) with chitosan (CS)/chitooligosaccharide (COS) to stabilize Pickering emulsions was examined, based on CS/COS ligands-induced partial unfolding in remodeling the Pickering particles features. Multi-spectral analysis suggested obvious changes in conformational structures of WPI due to interaction with CS/COS, with significantly higher unfolding degrees of WPI induced by COS. Non-covalent interactions were identified as the major forces for WPI-CS/COS conjugates. Ultrasonication enhanced electrostatic interaction between CS's -NH3 groups and WPI's -COO- groups which improved emulsification activity and storability of WPI-COS stabilized Pickering emulsion. This was attributed to increased surface hydrophobicity and decreased particle size compared to WPI-CS associated with differential unfolding degrees induced by different saccharide ligands. CLSM and SEM consistently observed smaller emulsion droplets in WPI-COS complexes than WPI-CS/COS particles tightly adsorbed at the oil-water interface. The electrostatic self-assembly of WPI with CS/COS greatly enhanced the encapsulation efficiency of quercetin than those stabilized by WPI alone and ultrasound further improved encapsulation efficiency. This corresponded well with the quantitative affinity parameters between quercetin and WPI-CS/COS complexes. This investigation revealed the great potential of glycan ligands-induced conformational transitions of extrinsic physical disruption in tuning Pickering particle features.
    Matched MeSH terms: Emulsions/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links