Displaying publications 141 - 160 of 363 in total

Abstract:
Sort:
  1. Leonardía AA, Tan BC, Kumar PP
    Plant Biol (Stuttg), 2013 Mar;15(2):384-94.
    PMID: 22882300 DOI: 10.1111/j.1438-8677.2012.00640.x
    Mosses and other bryophytes are vital components of forests, because they sustain a tremendous diversity of invertebrates and influence significant ecological functions. There have been few studies on moss population diversity in Southeast Asia, despite the escalating deforestation in this region of rich biodiversity. The genetic diversity of the tropical moss Acanthorrhynchium papillatum (Harv.) Fleisch., collected from forested areas in Singapore and Peninsular Malaysia, was elucidated using eight microsatellite markers developed for this species. Significant levels of allelic and haplotypic diversity were observed among clumps of the moss. Differences in allelic richness and genotypic diversity among the populations were higher in less disturbed forests compared to the more disturbed areas, suggesting that genetic diversity is affected by habitat quality. Genetic diversity levels within the clumps studied were low, indicating that vegetative reproduction was more important within clumps than sexual reproduction. However, multilocus genotypes of samples within the clumps studied were not all alike, providing evidence of microsatellite mutation or of occasional sexuality. Despite the isolation of populations, A. papillatum can introduce genetic variability by mutation among vegetatively propagated individuals. This study provides baseline information on the genetic diversity of A. papillatum tropical rain forests.
    Matched MeSH terms: Tropical Climate
  2. Hector A, Fowler D, Nussbaum R, Weilenmann M, Walsh RP
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3165-7.
    PMID: 22006959 DOI: 10.1098/rstb.2011.0174
    With a focus on the Danum Valley area of Sabah, Malaysian Borneo, this special issue has as its theme the future of tropical rainforests in a changing landscape and climate. The global environmental context to the issue is briefly given before the contents and rationale of the issue are summarized. Most of the papers are based on research carried out as part of the Royal Society South East Asia Rainforest Research Programme. The issue is divided into five sections: (i) the historical land-use and land management context; (ii) implications of land-use change for atmospheric chemistry and climate change; (iii) impacts of logging, forest fragmentation (particularly within an oil palm plantation landscape) and forest restoration on ecosystems and their functioning; (iv) the response and resilience of rainforest systems to climatic and land-use change; and (v) the scientific messages and policy implications arising from the research findings presented in the issue.
    Matched MeSH terms: Tropical Climate*
  3. Pyle JA, Warwick NJ, Harris NR, Abas MR, Archibald AT, Ashfold MJ, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3210-24.
    PMID: 22006963 DOI: 10.1098/rstb.2011.0060
    We present results from the OP3 campaign in Sabah during 2008 that allow us to study the impact of local emission changes over Borneo on atmospheric composition at the regional and wider scale. OP3 constituent data provide an important constraint on model performance. Treatment of boundary layer processes is highlighted as an important area of model uncertainty. Model studies of land-use change confirm earlier work, indicating that further changes to intensive oil palm agriculture in South East Asia, and the tropics in general, could have important impacts on air quality, with the biggest factor being the concomitant changes in NO(x) emissions. With the model scenarios used here, local increases in ozone of around 50 per cent could occur. We also report measurements of short-lived brominated compounds around Sabah suggesting that oceanic (and, especially, coastal) emission sources dominate locally. The concentration of bromine in short-lived halocarbons measured at the surface during OP3 amounted to about 7 ppt, setting an upper limit on the amount of these species that can reach the lower stratosphere.
    Matched MeSH terms: Tropical Climate
  4. Hector A, Philipson C, Saner P, Chamagne J, Dzulkifli D, O'Brien M, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3303-15.
    PMID: 22006970 DOI: 10.1098/rstb.2011.0094
    Relatively, little is known about the relationship between biodiversity and ecosystem functioning in forests, especially in the tropics. We describe the Sabah Biodiversity Experiment: a large-scale, long-term field study on the island of Borneo. The project aims at understanding the relationship between tree species diversity and the functioning of lowland dipterocarp rainforest during restoration following selective logging. The experiment is planned to run for several decades (from seed to adult tree), so here we focus on introducing the project and its experimental design and on assessing initial conditions and the potential for restoration of the structure and functioning of the study system, the Malua Forest Reserve. We estimate residual impacts 22 years after selective logging by comparison with an appropriate neighbouring area of primary forest in Danum Valley of similar conditions. There was no difference in the alpha or beta species diversity of transect plots in the two forest types, probably owing to the selective nature of the logging and potential effects of competitive release. However, despite equal total stem density, forest structure differed as expected with a deficit of large trees and a surfeit of saplings in selectively logged areas. These impacts on structure have the potential to influence ecosystem functioning. In particular, above-ground biomass and carbon pools in selectively logged areas were only 60 per cent of those in the primary forest even after 22 years of recovery. Our results establish the initial conditions for the Sabah Biodiversity Experiment and confirm the potential to accelerate restoration by using enrichment planting of dipterocarps to overcome recruitment limitation. What role dipterocarp diversity plays in restoration only will become clear with long-term results.
    Matched MeSH terms: Tropical Climate
  5. Ewers RM, Didham RK, Fahrig L, Ferraz G, Hector A, Holt RD, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3292-302.
    PMID: 22006969 DOI: 10.1098/rstb.2011.0049
    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.
    Matched MeSH terms: Tropical Climate
  6. Foster WA, Snaddon JL, Turner EC, Fayle TM, Cockerill TD, Ellwood MD, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3277-91.
    PMID: 22006968 DOI: 10.1098/rstb.2011.0041
    The conversion of natural forest to oil palm plantation is a major current threat to the conservation of biodiversity in South East Asia. Most animal taxa decrease in both species richness and abundance on conversion of forest to oil palm, and there is usually a severe loss of forest species. The extent of loss varies significantly across both different taxa and different microhabitats within the oil palm habitat. The principal driver of this loss in diversity is probably the biological and physical simplification of the habitat, but there is little direct evidence for this. The conservation of forest species requires the preservation of large reserves of intact forest, but we must not lose sight of the importance of conserving biodiversity and ecosystem processes within the oil palm habitat itself. We urgently need to carry out research that will establish whether maintaining diversity supports economically and ecologically important processes. There is some evidence that both landscape and local complexity can have positive impacts on biodiversity in the oil palm habitat. By intelligent manipulation of habitat complexity, it could be possible to enhance not only the number of species that can live in oil palm plantations but also their contribution to the healthy functioning of this exceptionally important and widespread landscape.
    Matched MeSH terms: Tropical Climate
  7. Loader NJ, Walsh RP, Robertson I, Bidin K, Ong RC, Reynolds G, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3330-9.
    PMID: 22006972 DOI: 10.1098/rstb.2011.0037
    Stable carbon isotope (δ(13)C) series were developed from analysis of sequential radial wood increments from AD 1850 to AD 2009 for four mature primary rainforest trees from the Danum and Imbak areas of Sabah, Malaysia. The aseasonal equatorial climate meant that conventional dendrochronology was not possible as the tree species investigated do not exhibit clear annual rings or dateable growth bands. Chronology was established using radiocarbon dating to model age-growth relationships and date the carbon isotopic series from which the intrinsic water-use efficiency (IWUE) was calculated. The two Eusideroxylon zwageri trees from Imbak yielded ages of their pith/central wood (±1 sigma) of 670 ± 40 and 759 ± 40 years old; the less dense Shorea johorensis and Shorea superba trees at Danum yielded ages of 240 ± 40 and 330 ± 40 years, respectively. All trees studied exhibit an increase in the IWUE since AD 1960. This reflects, in part, a response of the forest to increasing atmospheric carbon dioxide concentration. Unlike studies of some northern European trees, no clear plateau in this response was observed. A change in the IWUE implies an associated modification of the local carbon and/or hydrological cycles. To resolve these uncertainties, a shift in emphasis away from high-resolution studies towards long, well-replicated time series is proposed to develop the environmental data essential for model evaluation. Identification of old (greater than 700 years) ringless trees demonstrates their potential in assessing the impacts of climatic and atmospheric change. It also shows the scientific and applied value of a conservation policy that ensures the survival of primary forest containing particularly old trees (as in Imbak Canyon and Danum).
    Matched MeSH terms: Tropical Climate
  8. Willott SJ
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1783-90.
    PMID: 11605621
    The effects of selective logging on the diversity and species composition of moths were investigated by sampling from multiple sites in primary forest, both understorey and canopy, and logged forest at Danum Valley, Sabah, Malaysia. The diversity of individual sites was similar, although rarefied species richness of logged forest was 17% lower than for primary forest (understorey and canopy combined). There was significant heterogeneity in faunal composition and measures of similarity (NESS index) among primary forest understorey sites which may be as great as those between primary understorey and logged forest. The lowest similarity values were between primary forest understorey and canopy, indicating a distinct canopy fauna. A number of species encountered in the logged forest were confined to, or more abundant in, the canopy of primary forest. Approximately 10% of species were confined to primary forest across a range of species' abundances, suggesting this is a minimum estimate for the number of species lost following logging. The importance of accounting for heterogeneity within primary forest and sampling in the canopy when measuring the effects of disturbance on tropical forest communities are emphasized.
    Matched MeSH terms: Tropical Climate
  9. Newbery DM, Kennedy DN, Petol GH, Madani L, Ridsdale CE
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1763-82.
    PMID: 11605620
    Changes in species composition in two 4-ha plots of lowland dipterocarp rainforest at Danum, Sabah, were measured over ten years (1986-1996) for trees > or = 10 cm girth at breast height (gbh). Each included a lower-slope to ridge gradient. The period lay between two drought events of moderate intensity but the forest showed no large lasting responses, suggesting that its species were well adapted to this regime. Mortality and recruitment rates were not unusual in global or regional comparisons. The forest continued to aggrade from its relatively (for Sabah) low basal area in 1986 and, together with the very open upper canopy structure and an abundance of lianas, this suggests a forest in a late stage of recovery from a major disturbance, yet one continually affected by smaller recent setbacks. Mortality and recruitment rates were not related to population size in 1986, but across subplots recruitment was positively correlated with the density and basal area of small trees (10-< 50cm gbh) forming the dense understorey. Neither rate was related to topography. While species with larger mean gbh had greater relative growth rates (rgr) than smaller ones, subplot mean recruitment rates were correlated with rgr among small trees. Separating understorey species (typically the Euphorbiaceae) from the overstorey (Dipterocarpaceae) showed marked differences in change in mortality with increasing gbh: in the former it increased, in the latter it decreased. Forest processes are centred on this understorey quasi-stratum. The two replicate plots showed a high correspondence in the mortality, recruitment, population changes and growth rates of small trees for the 49 most abundant species in common to both. Overstorey species had higher rgrs than understorey ones, but both showed considerable ranges in mortality and recruitment rates. The supposed trade-off in traits, viz slower rgr, shade tolerance and lower population turnover in the understorey group versus faster potential growth rate, high light responsiveness and high turnover in the overstorey group, was only partly met, as some understorey species were also very dynamic. The forest at Danum, under such a disturbance-recovery regime, can be viewed as having a dynamic equilibrium in functional and structural terms. A second trade-off in shade-tolerance versus drought-tolerance is suggested for among the understorey species. A two-storey (or vertical component) model is proposed where the understorcy-overstorey species' ratio of small stems (currently 2:1) is maintained by a major feedback process. The understorey appears to be an important part of this forest, giving resilience against drought and protecting the overstorey saplings in the long term. This view could be valuable for understanding forest responses to climate change where drought frequency in Borneo is predicted to intensify in the coming decades.
    Matched MeSH terms: Tropical Climate
  10. Douglas I, Bidin K, Balamurugan G, Chappell NA, Walsh RP, Greer T, et al.
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1749-61.
    PMID: 11605619
    Ten years' hydrological investigations at Danum have provided strong evidence of the effects of extremes of drought, as in the April 1992 El Niño southern oscillation event, and flood, as in January 1996. The 1.5 km2 undisturbed forest control catchment experienced a complete drying out of the stream for the whole 1.5 km of defined channel above the gauging station in 1992, but concentrated surface flow along every declivity from within a few metres of the catchment divide after the exceptional rains of 19 January 1996. Under these natural conditions, erosion is episodic. Sediment is discharged in pulses caused by storm events, collapse of debris dams and occasional landslips. Disturbance by logging accentuates this irregular regime. In the first few months following disturbance, a wave of sediment is moved by each storm, but over subsequent years, rare events scour sediment from bare areas, gullies and channel deposits. The spatial distribution of sediment sources changes with time after logging, as bare areas on slopes are revegetated and small gullies are filled with debris. Extreme storm events, as in January 1996, cause logging roads to collapse, with landslides leading to surges of sediment into channels, reactivating the pulsed sediment delivery by every storm that happened immediately after logging. These effects are not dampened out with increasing catchment scale. Even the 721 km2 Sungai Segama has a sediment yield regime dominated by extreme events, the sediment yield in that single day on 19 January 1996 exceeding the annual sediment load in several previous years. In a large disturbed catchment, such road failures and logging-activity-induced mass movements increase the mud and silt in floodwaters affecting settlements downstream. Management systems require long-term sediment reduction strategies. This implies careful road design and good water movement regulation and erosion control throughout the logging process.
    Matched MeSH terms: Tropical Climate
  11. Condit R, Ashton PS, Manokaran N, LaFrankie JV, Hubbell SP, Foster RB
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1739-48.
    PMID: 11605618
    Dynamics of the Pasoh forest in Peninsular Malaysia were assessed by drawing a comparison with a forest in Panama, Central America, whose dynamics have been thoroughly described. Census plots of 50 ha were established at both sites using standard methods. Tree mortality at Pasoh over an eight-year interval was 1.46% yr(-1) for all stems > or = 10 mm diameter at breast height (dbh), and 1.48% yr(-1) for stems > or = 100 mm dbh. Comparable figures at the Barro Colorado Island site in Panama (BCI) were 2.55% and 2.03%. Growth and recruitment rates were likewise considerably higher at BCI than at Pasoh. For example, in all trees 500-700 mm in dbh, mean BCI growth over the period 1985-1995 was 6 mm yr(-1), whereas mean Pasoh growth was about 3.5 mm yr(-1). Examining growth and mortality rates for individual species showed that the difference between the forests can be attributed to a few light-demanding pioneer species at BCI, which have very high growth and mortality; Pasoh is essentially lacking this guild. The bulk of the species in the two forests are shade-tolerant and have very similar mortality, growth and recruitment. The Pasoh forest is more stable than BCI's in another way as well: few of its tree populations changed much over the eight-year census interval. In contrast, at BCI, over 10% of the species had populations increasing or decreasing at a rate of >0.05 yr(-1) compared to just 2% of the species at Pasoh). The faster species turnover at BCI can probably be attributed to severe droughts that have plagued the forest periodically over the past 30 years; Pasoh has not suffered such extreme events recently. The dearth of pioneer species at Pasoh is associated with low-nutrient soil and slow litter breakdown, but the exact mechanisms behind this association remain poorly understood.
    Matched MeSH terms: Tropical Climate
  12. Martin-Smith KM, Laird LM, Bullough L, Lewis MG
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1803-10.
    PMID: 11605623
    Community resistance to, and resilience from, perturbation will determine the trajectory of recovery from disturbance. Although selective timber extraction is considered a severe disturbance, fish communities from headwater streams around Danum Valley Field Centre, Sabah, Malaysia, showed few long-term changes in species composition or abundance. However, some species showed short-term (< 18 months) absence or decrease in abundance. These observations suggested that both resistance and resilience were important in maintaining long-term fish community structure. Resistance to perturbation was tested by monitoring fish communities before and after the creation of log-debris dams, while resilience was investigated by following the time-course of recolonization following complete removal of all fish. High community resistance was generally shown although the response was site-specific, dependent on the composition of the starting community, the size of the stream and physical habitat changes. High resilience was demonstrated in all recolonization experiments with strong correlations between pre- and post-defaunation communities, although there was a significant difference between pool and riffle habitats in the time-course of recovery. These differences can be explained by the movement characteristics of the species found in the different habitats. Resilience appeared to be a more predictable characteristic of the community than resistance and the implications of this for ensuring the long-term persistence of fish in the area are discussed.
    Matched MeSH terms: Tropical Climate
  13. Eggleton P, Homathevi R, Jones DT, MacDonald JA, Jeeva D, Bignell DE, et al.
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1791-802.
    PMID: 11605622
    A synthesis is presented of sampling work conducted under a UK government-funded Darwin Initiative grant undertaken predominantly within the Danum Valley Conservation Area (DVCA), Sabah, East Malaysia. The project concerned the assemblage structure, gas physiology and landscape gas fluxes of termites in pristine and two ages of secondary, dipterocarp forest. The DVCA termite fauna is typical of the Sunda region, dominated by Termes-group soil-feeders and Nasutitermitinae. Selective logging appears to have relatively little effect on termite assemblages, although soil-feeding termites may be moderately affected by this level of disturbance. Species composition changes, but to a small extent when considered against the background level of compositional differences within the Sunda region. Physiologically the assemblage is very like others that have been studied, although there are some species that do not fit on the expected body size-metabolic rate curve. As elsewhere, soil-feeders and soil-wood interface-feeders tend to produce more methane. As with the termite assemblage characteristics, gross gas and energy fluxes do not differ significantly between logged and unlogged sites. Although gross methane fluxes are high, all the soils at DVCA were methane sinks, suggesting that methane oxidation by methanotrophic bacteria was a more important process than methane production by gut archaea. This implies that methane production by termites in South-East Asia is not contributing significantly to the observed increase in levels of methane production worldwide. Biomass density, species richness, clade complement and energy flow were much lower at DVCA than at a directly comparable site in southern Cameroon. This is probably due to the different biogeographical histories of the areas.
    Matched MeSH terms: Tropical Climate
  14. Walsh RP, Newbery DM
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1869-83.
    PMID: 11605629
    Climatic records for Danum for 1985-1998, elsewhere in Sabah since 1879, and long monthly rainfall series from other rainforest locations are used to place the climate, and particularly the dry period climatology, of Danum into a world rainforest context. The magnitude frequency and seasonality of dry periods are shown to vary greatly within the world's rainforest zone. The climate of Danum, which is aseasonal but subject, as in 1997-1998, to occasional drought, is intermediate between less drought-prone north-western Borneo and the more drought-prone east coast. Changes through time in drought magnitude frequency in Sabah and rainforest locations elsewhere in South-East Asia and in the Neotropics are compared. The 1997-1998 ENSO-related drought event in Sabah is placed into a historical context. The effects of drought on tree growth and mortality in the tropics are assessed and a model relating intensity and frequency of drought disturbance to forest structure and composition is discussed.
    Matched MeSH terms: Tropical Climate
  15. Banin LF, Raine EH, Rowland LM, Chazdon RL, Smith SW, Rahman NEB, et al.
    Philos Trans R Soc Lond B Biol Sci, 2023 Jan 02;378(1867):20210090.
    PMID: 36373930 DOI: 10.1098/rstb.2021.0090
    Current policy is driving renewed impetus to restore forests to return ecological function, protect species, sequester carbon and secure livelihoods. Here we assess the contribution of tree planting to ecosystem restoration in tropical and sub-tropical Asia; we synthesize evidence on mortality and growth of planted trees at 176 sites and assess structural and biodiversity recovery of co-located actively restored and naturally regenerating forest plots. Mean mortality of planted trees was 18% 1 year after planting, increasing to 44% after 5 years. Mortality varied strongly by site and was typically ca 20% higher in open areas than degraded forest, with height at planting positively affecting survival. Size-standardized growth rates were negatively related to species-level wood density in degraded forest and plantations enrichment settings. Based on community-level data from 11 landscapes, active restoration resulted in faster accumulation of tree basal area and structural properties were closer to old-growth reference sites, relative to natural regeneration, but tree species richness did not differ. High variability in outcomes across sites indicates that planting for restoration is potentially rewarding but risky and context-dependent. Restoration projects must prepare for and manage commonly occurring challenges and align with efforts to protect and reconnect remaining forest areas. The abstract of this article is available in Bahasa Indonesia in the electronic supplementary material. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.
    Matched MeSH terms: Tropical Climate*
  16. Hill JK, Gray MA, Khen CV, Benedick S, Tawatao N, Hamer KC
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3265-76.
    PMID: 22006967 DOI: 10.1098/rstb.2011.0050
    Large areas of tropical forest now exist as remnants scattered across agricultural landscapes, and so understanding the impacts of forest fragmentation is important for biodiversity conservation. We examined species richness and nestedness among tropical forest remnants in birds (meta-analysis of published studies) and insects (field data for fruit-feeding Lepidoptera (butterflies and moths) and ants). Species-area relationships were evident in all four taxa, and avian and insect assemblages in remnants typically were nested subsets of those in larger areas. Avian carnivores and nectarivores and predatory ants were more nested than other guilds, implying that the sequential loss of species was more predictable in these groups, and that fragmentation alters the trophic organization of communities. For butterflies, the ordering of fragments to achieve maximum nestedness was by fragment area, suggesting that differences among fragments were driven mainly by extinction. In contrast for moths, maximum nestedness was achieved by ordering species by wing length; species with longer wings (implying better dispersal) were more likely to occur at all sites, including low diversity sites, suggesting that differences among fragments were driven more strongly by colonization. Although all four taxa exhibited high levels of nestedness, patterns of species turnover were also idiosyncratic, and thus even species-poor sites contributed to landscape-scale biodiversity, particularly for insects.
    Matched MeSH terms: Tropical Climate
  17. Bagchi R, Philipson CD, Slade EM, Hector A, Phillips S, Villanueva JF, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3246-55.
    PMID: 22006965 DOI: 10.1098/rstb.2011.0034
    Much of the forest remaining in South East Asia has been selectively logged. The processes promoting species coexistence may be the key to the recovery and maintenance of diversity in these forests. One such process is the Janzen-Connell mechanism, where specialized natural enemies such as seed predators maintain diversity by inhibiting regeneration near conspecifics. In Neotropical forests, anthropogenic disturbance can disrupt the Janzen-Connell mechanism, but similar data are unavailable for South East Asia. We investigated the effects of conspecific density (two spatial scales) and distance from fruiting trees on seed and seedling survival of the canopy tree Parashorea malaanonan in unlogged and logged forests in Sabah, Malaysia. The production of mature seeds was higher in unlogged forest, perhaps because high adult densities facilitate pollination or satiate pre-dispersal predators. In both forest types, post-dispersal survival was reduced by small-scale (1 m(2)) conspecific density, but not by proximity to the nearest fruiting tree. Large-scale conspecific density (seeds per fruiting tree) reduced predation, probably by satiating predators. Higher seed production in unlogged forest, in combination with slightly higher survival, meant that recruitment was almost entirely limited to unlogged forest. Thus, while logging might not affect the Janzen-Connell mechanism at this site, it may influence the recruitment of particular species.
    Matched MeSH terms: Tropical Climate
  18. How YF, Lee CY
    Pest Manag Sci, 2011 Jun;67(6):734-40.
    PMID: 21370390 DOI: 10.1002/ps.2123
    Five formulated insecticides (lambda-cyhalothrin at 10 mg m⁻², bifenthrin at 50 mg m⁻², fipronil at 10 mg m⁻², fenitrothion at 50 mg m⁻², imidacloprid at 5 mg m⁻²) and one active ingredient (DDT at 500 mg m⁻²) were evaluated using a surface contact method against early and late instars and adults of two strains of the tropical bed bug, Cimex hemipterus (F.). Synergism of lambda-cyhalothrin and fipronil using piperonyl butoxide (PBO) was also assessed.
    Matched MeSH terms: Tropical Climate
  19. Chan PW, Goh A, Lum L
    Pediatr Int, 2001 Feb;43(1):53-7.
    PMID: 11208000
    BACKGROUND: The clinical profile of severe upper airway obstruction, a challenging acute pediatric emergency, has not been extensively documented in the developing nations of the tropics.

    METHODS: The diagnostic categories, severity of illness and outcome from 63 episodes of severe upper airway obstruction in 56 children admitted to the Pediatric Intensive Care Unit between January 1994 and December 1999 were reviewed. Outcome variables studied included requirement for ventilation, mortality and complications. Severity of illness was determined with the Pediatric Risk of Mortality (PRISM) II score.

    RESULTS: Viral croup (29%) was the most common diagnosis, followed by mediastinal malignancy (13%), bacterial tracheitis (11%) and Pierre Robin syndrome (11%). There were no admissions for acute epiglottitis. Thirty episodes (48%) required ventilation for a median duration of 4.0 days. Bacterial tracheitis (100%) and subglottic stenosis (100%) were the most likely diagnoses requiring ventilation. Difficulty in intubation was encountered in 13 episodes (43%) involving, in particular, patients with bacterial tracheitis (83%; P = 0.006). Only two patients required a tracheostomy. The overall mortality was 11%. The PRISM score for all categories was generally low (mean 10.3 +/- 1.0; median 9.0). Non-survivors had a significantly higher PRISM II score than survivors (27.4 +/- 9.7 vs 8.1 +/- 4.9, respectively; P = 0.002) and were more likely to include children with bacterial tracheitis and mediastinal malignancy.

    CONCLUSIONS: There is marked heterogeneity in the causes of upper airway obstruction in the tropics with viral croup remaining the most common. A significant proportion required ventilation, but outcome is generally favorable, except in those with bacterial tracheitis and mediastinal malignancy.

    Matched MeSH terms: Tropical Climate
  20. Chan PW, Chew FT, Tan TN, Chua KB, Hooi PS
    Pediatr Pulmonol, 2002 Jul;34(1):47-51.
    PMID: 12112797 DOI: 10.1002/ppul.10095
    Respiratory syncytial virus (RSV) is the most important cause of lower respiratory tract infection (LRTI) in young children. We determined if there was a seasonal variation in Malaysia in the incidence of RSV infection in young children admitted with LRTI, and possible associations of RSV infection with local meteorological parameters. A total of 5,691 children, aged less than 24 months and hospitalized with LRTI (i.e., bronchiolitis and pneumonia) between 1982-1997, were included in this study. Nasopharyngeal samples were collected and examined for RSV by immunofluorescence, viral culture, or both. Seasonal variations were determined by analyzing the monthly RSV-positive isolation rate via time series analysis. Possible correlations with local meteorological parameters were also evaluated.RSV was isolated in 1,047 (18.4%) children. Seasonal variations in RSV infection rate were evident and peaked during the months of November, December, and January (test statistics [T] = 53.7, P < 0.001). This seasonal variation was evident for both bronchiolitis and pneumonia categories (T = 42.8 and 56.9, respectively, P < 0.001). The rate of RSV infection appeared to correlate with the monthly number of rain days (r = 0.26, P < 0.01), and inversely with the monthly mean temperature (r = -0.38, P < 0.001). In the tropics, seasonal variations in the incidence of RSV infection are evident, with an annual peak in November, December, and January. This information provides a guide for healthcare provisions and implementation of RSV prevention.
    Matched MeSH terms: Tropical Climate
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links