Displaying publications 161 - 165 of 165 in total

Abstract:
Sort:
  1. Alam MT, Das MK, Ansari MA, Sharma YD
    Acta Trop, 2006 Jan;97(1):10-8.
    PMID: 16125659
    Anopheles (Cellia) sundaicus (Rodenwaldt) is an important malaria vector in the Andaman and Nicobar islands of India where it breeds in freshwater as well as in brackish water. To establish the molecular identity of An. sundaicus on these islands we analyzed samples from four geographically isolated areas-Teressa, Nancowry, Car Nicobar and Katchal islands. PCR-amplification and nucleotide sequence analysis were performed for internal transcribed spacer 2 (ITS2) and domain-3 (D3) of 28S rRNA. The ITS2 region of An. sundaicus from all four islands was identical but different from An. sundaicus A of Vietnam and An. sundaicus s.s of Malaysia. Furthermore, freshwater and brackish water forms of An. sundaicus did not reveal any sequence variation. Similarly, the D3 sequences were identical among all An. sundaicus samples from the four islands. D3 sequences for a species of the Sundaicus Complex are reported here for the first time and thus could not be compared with other regional isolates of this species. In conclusion, probably only one member of the Sundaicus Complex exists on the Andaman and Nicobar islands, which breeds in freshwater as well as in brackish water and is different from the An. sundaicus A and Malaysian An. sundaicus s.s. The identification of a new sibling species of the Sundaicus Complex in these islands is significant from the viewpoint of vector control strategies.
  2. Ahmed U, Manzoor M, Qureshi S, Mazhar M, Fatima A, Aurangzeb S, et al.
    Acta Trop, 2023 Mar;239:106824.
    PMID: 36610529 DOI: 10.1016/j.actatropica.2023.106824
    Pathogenic A. castellanii and N. fowleri are opportunistic free-living amoebae. Acanthamoeba spp. are the causative agents of granulomatous amebic encephalitis (GAE) and amebic keratitis (AK), whereas Naegleria fowleri causes a very rare but severe brain infection called primary amebic meningoencephalitis (PAM). Acridinone is an important heterocyclic scaffold and both synthetic and naturally occurring derivatives have shown various valuable biological properties. In the present study, ten synthetic Acridinone derivatives (I-X) were synthesized and assessed against both amoebae for anti-amoebic and cysticidal activities in vitro. In addition, excystation, encystation, cytotoxicity, host cell pathogenicity was also performed in-vitro. Furthermore, molecular docking studies of these compounds with three cathepsin B paralogous enzymes of N. fowleri were performed in order to predict the possible docking mode with pathogen. Compound VII showed potent anti-amoebic activity against A. castellanii with IC50 53.46 µg/mL, while compound IX showed strong activity against N. fowleri in vitro with IC50 72.41 µg/mL. Compounds II and VII showed a significant inhibition of phenotypic alteration of A. castellanii, while compound VIII significantly inhibited N. fowleri cysts. Cytotoxicity assessment showed that these compounds caused minimum damage to human keratinocyte cells (HaCaT cells) at 100 µg/mL, while also effectively reduced the cytopathogenicity of Acanthamoeba to HaCaT cells. Moreover, Cathepsin B protease was investigated in-silico as a new molecular therapeutic target for these compounds. All compounds showed potential interactions with the catalytic residues. These results showed that acridine-9(10H)-one derivatives, in particular compounds II, VII, VIII and IX hold promise in the development of therapeutic agents against these free-living amoebae.
  3. Ahmed U, Sivasothy Y, Khan KM, Khan NA, Wahab SMA, Awang K, et al.
    Acta Trop, 2023 Dec;248:107033.
    PMID: 37783284 DOI: 10.1016/j.actatropica.2023.107033
    Acanthamoeba castellanii is an opportunistic free-living amoeba (FLA) pathogen which can cause fatal central nervous system (CNS) infection, granulomatous amoebic encephalitis (GAE) and potentially blinding ocular infection, Acanthamoeba keratitis (AK). Acanthamoeba species remain a challenging protist to treat due to the unavailability of safe and effective therapeutic drugs and their ability to protect themselves in the cyst stage. Natural products and their secondary metabolites play a pivotal role in drug discovery against various pathogenic microorganisms. In the present study, the ethyl acetate extract of Myristica cinnamomea King fruit was evaluated against A. castellanii (ATCC 50492), showing an IC50 of 45.102 ± 4.62 µg/mL. Previously, the bio-guided fractionation of the extract resulted in the identification of three active compounds, namely Malabaricones (A-C). The isolated and thoroughly characterized acylphenols were evaluated for their anti-amoebic activity against A. castellanii for the first time. Among tested compounds, Malabaricone B (IC50 of 101.31 ± 17.41 µM) and Malabaricone C (IC50 of 49.95 ± 6.33 µM) showed potent anti-amoebic activity against A. castellanii trophozoites and reduced their viability up-to 75 and 80 %, respectively. Moreover, both extract and Malabaricones also significantly (p < 0.05) inhibit the encystation and excystation of A. castellanii, while showed minimal toxicity against human keratinocyte cells (HaCaT cells) at lower tested concentrations. Following that, the explanation of the possible mechanism of action of purified compounds were assessed by detection of the state of chromatin. Hoechst/PI 33342 double staining showed that necrotic cell death occurred in A. castellanii trophozoites after 8 h treatment of Malabaricones (A-C). These findings demonstrate that Malabaricones B and C could serve as promising therapeutic options against A. castellanii infections.
  4. Adnan RA, Ramli MF, Othman HF, Asha'ri ZH, Ismail SNS, Samsudin S
    Acta Trop, 2021 Apr;216:105834.
    PMID: 33485870 DOI: 10.1016/j.actatropica.2021.105834
    BACKGROUND: Dengue incidence has grown dramatically around the world in recent years. Vector control is the only method to reduce dengue incidence due to the lack of a vaccine available. By understanding the factors contributed to the vector densities such as environmental and sociological factors, dengue prevention and control may succeed.

    OBJECTIVE: This study is aimed at determining the impact of sociological and environmental factors contributing to dengue cases.

    METHODS: The study surveyed 379 respondents with dengue history. The socio-environmental factors were evaluated by chi-square and binary regression.

    RESULT: The chi-square results revealed sociological factors associated between family with dengue experience such as older age (p =0.012), fewer than four people in the household (p= 0.008), working people (p= 0.004) and apartment/terrace houses (p=0.023). Similarly, there is a significant association between respondent's dengue history and houses that are shaded with vegetation (p= 0.012) and the present of public playground areas near the residential (p = 0.011).

    CONCLUSION: The study identified socio-environmental factors that play an important role in the abundance of Aedes mosquitoes and also for the local dengue control measures.

  5. Adler PH, Takaoka H, Sofian-Azirun M, Chen CD, Suana IW
    Acta Trop, 2019 May;193:1-6.
    PMID: 30772330 DOI: 10.1016/j.actatropica.2019.02.017
    A recently described species of black fly, Simulium wayani Takaoka and Chen, from the island of Timor was chromosomally mapped to provide insights into its evolutionary and biogeographic history. The morphologically based species status of S. wayani is supported by a suite of fixed chromosomal rearrangements and unique sex chromosomes derived primarily from a large pool of polymorphisms in the S. ornatipes complex in Australia. The banding patterns of its polytene chromosomes indicate that S. wayani is closely related to a pair of homosequential cryptic species (S. norfolkense Dumbleton and S. ornatipes cytoform A2) in the S. ornatipes Skuse complex on mainland Australia; all three species uniquely share the same amplified band in their chromosomal complement. The low level of polymorphism and heterozygosity in S. wayani, relative to Australian populations of the S. ornatipes complex, suggests few colonization events from the larger land mass.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links