Displaying 1 publication

Abstract:
Sort:
  1. Aziz SB, Murad AR, Abdulwahid RT, Aziz DM, Abdalrahman AA, Abdullah RM, et al.
    Int J Biol Macromol, 2024 Jul;273(Pt 2):133203.
    PMID: 38885860 DOI: 10.1016/j.ijbiomac.2024.133203
    This study investigates the performance of biopolymer electrolytes based on chitosan and dextran for energy storage applications. The optimization of ion transport and performance of electric double-layer capacitors EDCL using these electrolytes, incorporating different concentrations of glycerol as a plasticizer and TiO2 as nanoparticles, is explored. Impedance measurements indicate a notable reduction in charge transfer resistance with the addition of TiO2. DC conductivity estimates from AC spectra plateau regions reach up to 5.6 × 10-4 S/cm. The electric bulk resistance Rb obtained from the Nyquist plots exhibits a substantial decrease with increasing plasticizer concentration, further enhanced by the addition of the nanoparticles. Specifically, Rb decreases from ∼20 kΩ to 287 Ω when glycerol concentration increases from 10 % to 40 % and further drops to 30 Ω with the introduction of TiO2. Specific capacitance obtained from cyclic voltammetry shows a notable increase as the scan rate decreases, indicating improved efficiency and stability of ion transport. The TiO2-enriched EDCL achieves 12.3 F/g specific capacitance at 20 mV/s scan rate, with high ion conductivity and extended electrochemical stability. These results suggest the great potential of plasticizer and TiO2 with biopolymers in improving the performance of energy storage systems.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links