Displaying all 3 publications

Abstract:
Sort:
  1. Abdulkadir BA, Jalil AA, Cheng CK, Setiabudi HD
    Chem Asian J, 2024 Jan 15;19(2):e202300833.
    PMID: 37997488 DOI: 10.1002/asia.202300833
    Hydrogen plays a crucial role in the future energy landscape owing to its high energy density. However, finding an ideal storage material is the key challenge to the success of the hydrogen economy. Various solid-state hydrogen storage materials, such as metal hydrides, have been developed to realize safe, effective, and compact hydrogen storage. However, low kinetics and thermodynamic stability lead to a high working temperature and a low hydrogen sorption rate of the metal hydrides. Using scaffolds made from porous materials like silica to confine the metal hydrides is necessary for better and improved hydrogen storage. Therefore, this article reviews porous silica-based scaffolds as an ideal material for improved hydrogen storage. The outcome showed that confining the metal hydrides using scaffolds based on porous silica significantly increases their storage capacities. It was also found that the structural modifications of the silica-based scaffold into a hollow structure further improved the storage capacity and increased the affinity and confinement ability of the metal hydrides, which prevents the agglomeration of metal particles during the adsorption/desorption process. Hence, the structural modifications of the silica material into a fibrous and hollow material are recommended to be crucial for further enhancing the metal hydride storage capacity.
  2. Dandashire BS, Magashi AM, Abdulkadir B, Abbas MA, Goni MD, Yakubu A
    J Adv Vet Anim Res, 2019 Jun;6(2):183-192.
    PMID: 31453189 DOI: 10.5455/javar.2019.f330
    OBJECTIVE: The main objective of this study is to isolate, identify, and quantify the active antimicrobial compounds present in the crude aqueous stem bark extract of B. dalzielii using some common pathogenic microorganisms as well as toxicological profile.

    MATERIAL AND METHODS: Crude aqueous stem bark extract of Boswellia dalzielii (CASEB) was partitioned by preparative thin layer chromatography (PTLC) using chloroform-methanol-water, 8:2:1 (v/v). The resulting bands were extracted using chloroform-methanol (50:50). The extract of each band was evaluated for antimicrobial activity on Streptococcus pyogenes, Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Klebsiella pneumonia, Pseudomonas aeruginosa, Proteus mirabilis, Salmonella typhi, and Candida albicans by disc diffusion. Compounds in the most antimicrobially bioactive fraction (MAAF) were identified by high performance liquid chromatography (HPLC), Fourier transform infrared spectrophotometry (FT-IR), and gas chromatography-mass spectrometry (GC-MS). Toxicological profile of the CASEB was evaluated by studying its effect in albino Wister rats.

    RESULTS: PTLC produced five bands/fractions of which the MAAF was identified as RF2-fraction being active against all the isolates except E. coli and K. pneumoniae. HPLC of the MAAF revealed seven components; FT-IR revealed 17 functional groups; GC-MS revealed five compounds of which 93.18% are Oleic acid (44.88%), Squalene (34.16%), and n-Hexadecanoic acid (14.14%). The acute toxicity showed LD50 > 3,000 mg/kg. Sub-chronic toxicity showed that higher doses of the CASEB caused significant changes in liver function indices and a fatty change with lymphocytic infiltration (sign of acute hepatitis) in the liver tissues, but none of these changes were observed in the kidneys.

    CONCLUSION: The antimicrobially active compounds in CASEB were Oleic acid, Squalene, and n-Hexadecanoic acid. These can be further purified and used as precursors of new antimicrobial agents for treating infections especially those due to fungi and Pseudomonas spp. that are known to resist wide array of antimicrobial agents. The LD50 of CASEB is >3,000 mg/kg in rats. However, long-term consumption of CASEB is associated with significant liver damage.

  3. Adam AA, Ojur Dennis J, Al-Hadeethi Y, Mkawi EM, Abubakar Abdulkadir B, Usman F, et al.
    Polymers (Basel), 2020 Dec 01;12(12).
    PMID: 33271876 DOI: 10.3390/polym12122884
    Supercapacitors are energy storage devices with high power density, rapid charge/discharge rate, and excellent cycle stability. Carbon-based supercapacitors are increasingly attracting attention because of their large surface area and high porosity. Carbon-based materials research has been recently centered on biomass-based materials due to the rising need to maintain a sustainable environment. Cellulose and lignin constitute the major components of lignocellulose biomass. Since they are renewable, sustainable, and readily accessible, lignin and cellulose-based supercapacitors are economically viable and environmentally friendly. This review aims to systematically analyze published research findings on electrospun lignin, cellulose, and lignin/cellulose nanofibers for use as supercapacitor electrode materials. A rigorous scientific approach was employed to screen the eligibility of relevant articles to be included in this study. The research questions and the inclusion criteria were clearly defined. The included articles were used to draw up the research framework and develop coherent taxonomy of literature. Taxonomy of research literature generated from the included articles was classified into review papers, electrospun lignin, cellulose, and lignin/cellulose nanofibers for use as supercapacitor electrode materials. Furthermore, challenges, recommendations, and research directions for future studies were equally discussed extensively. Before this study, no review on electrospun lignin/cellulose nanofiber-based supercapacitors has been reported. Thus, this systematic review will provide a reference for other researchers interested in developing biomass-based supercapacitors as an alternative to conventional supercapacitors based on petroleum products.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links