Displaying all 2 publications

Abstract:
Sort:
  1. Mat Jan NA, Marsani MF, Thiruchelvam L, Zainal Abidin NB, Shabri A, Abdullah Sani SA
    Geospat Health, 2023 Nov 13;18(2).
    PMID: 37961980 DOI: 10.4081/gh.2023.1236
    The occurrence of floods has the potential to escalate the transmission of infectious diseases. To enhance our comprehension of the health impacts of flooding and facilitate effective planning for mitigation strategies, it is necessary to explore the flood risk management. The variability present in hydrological records is an important and neglecting non-stationary patterns in flood data can lead to significant biases in estimating flood quantiles. Consequently, adopting a non-stationary flood frequency analysis appears to be a suitable approach to challenge the assumption of independent and identically distributed observations in the sample. This research employed the generalized extreme value (GEV) distribution to examine annual maximum flood series. To estimate non-stationary models in the flood data, several statistical tests, including the TL-moment method was utilized on the data from ten stream-flow stations in Johor, Malaysia, which revealed that two stations, namely Kahang and Lenggor, exhibited non-stationary behaviour in their annual maximum streamflow. Two non-stationary models efficiently described the data series from these two specific stations, the control of which could reduce outbreak of infectious diseases when used for controlling the development measures of the hydraulic structures. Thus, the application of these models may help prevent biased prediction of flood occurrences leading to lower number of cases infected by disease.
  2. Manickam S, Abidin Nb, Parthasarathy S, Alzorqi I, Ng EH, Tiong TJ, et al.
    Ultrason Sonochem, 2014 Jul;21(4):1519-26.
    PMID: 24485395 DOI: 10.1016/j.ultsonch.2014.01.002
    Palm oil mill effluent (POME) is a highly contaminating wastewater due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Conventional treatment methods require longer residence time (10-15 days) and higher operating cost. Owing to this, finding a suitable and efficient method for the treatment of POME is crucial. In this investigation, ultrasound cavitation technology has been used as an alternative technique to treat POME. Cavitation is the phenomenon of formation, growth and collapse of bubbles in a liquid. The end process of collapse leads to intense conditions of temperature and pressure and shock waves which assist various physical and chemical transformations. Two different ultrasound systems i.e. ultrasonic bath (37 kHz) and a hexagonal triple frequency ultrasonic reactor (28, 40 and 70 kHz) of 15 L have been used. The results showed a fluctuating COD pattern (in between 45,000 and 60,000 mg/L) while using ultrasound bath alone, whereas a non-fluctuating COD pattern with a final COD of 27,000 mg/L was achieved when hydrogen peroxide was introduced. Similarly for the triple frequency ultrasound reactor, coupling all the three frequencies resulted into a final COD of 41,300 mg/L compared to any other individual or combination of two frequencies. With the possibility of larger and continuous ultrasonic cavitational reactors, it is believed that this could be a promising and a fruitful green process engineering technique for the treatment of POME.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links