Displaying all 2 publications

Abstract:
Sort:
  1. Vaezzadeh V, Zakaria MP, Shau-Hwai AT, Ibrahim ZZ, Mustafa S, Abootalebi-Jahromi F, et al.
    Mar Pollut Bull, 2015 Nov 15;100(1):311-320.
    PMID: 26323864 DOI: 10.1016/j.marpolbul.2015.08.034
    Peninsular Malaysia has gone through fast development during recent decades resulting in the release of large amounts of petroleum and its products into the environment. Aliphatic hydrocarbons are one of the major components of petroleum. Surface sediment samples were collected from five rivers along the west coast of Peninsular Malaysia and analyzed for aliphatic hydrocarbons. The total concentrations of C10 to C36 n-alkanes ranged from 27,945 to 254,463ng·g(-1)dry weight (dw). Evaluation of various n-alkane indices such as carbon preference index (CPI; 0.35 to 3.10) and average chain length (ACL; 26.74 to 29.23) of C25 to C33 n-alkanes indicated a predominance of petrogenic source n-alkanes in the lower parts of the Rivers, while biogenic origin n-alkanes from vascular plants are more predominant in the upper parts, especially in less polluted areas. Petrogenic sources of n-alkanes are predominantly heavy and degraded oil versus fresh oil inputs.
  2. Keshavarzifard M, Zakaria MP, Hwai TS, Yusuff FF, Mustafa S, Vaezzadeh V, et al.
    Mar Pollut Bull, 2014 Nov 15;88(1-2):366-72.
    PMID: 25173594 DOI: 10.1016/j.marpolbul.2014.08.014
    In this study, the surface sediments of the Malacca and Prai Rivers were analyzed to identify the distributions, and sources of Polycyclic Aromatic Hydrocarbons (PAHs). The total PAH concentrations varied from 716 to 1210 and 1102 to 7938 ng g(-1)dw in the sediments of the Malacca and Prai Rivers, respectively. The PAH concentrations can be classified as moderate and high level of pollution in the sediments of the Malacca and Prai Rivers, respectively. The comparison of PAHs with the Sediment Quality Guidelines (SQGs) indicates that the PAHs in the sediments of the Malacca and Prai Rivers may have the potential to cause adverse toxicity effects on the sampled ecosystems. The diagnostic ratios of individual PAHs indicate both petrogenic- and pyrogenic-origin PAHs with dominance of pyrogenic source in both rivers. These findings demonstrate that the environmental regulations in Malaysia have effectively reduced the input of petrogenic petroleum hydrocarbons into rivers.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links