METHODS: Breast cancer MRI images were classified into BA, BF, BPT, BTA, MDC, MLC, MMC, and MPC using a proposed Deep Learning model with additional 5 fine-tuned Deep learning models consisting of Xception, InceptionV3, VGG16, MobileNet and ResNet50 trained on ImageNet database. The dataset was collected from Kaggle depository for breast cancer detection and classification. That Dataset was boosted using GAN technique. The images in the dataset have 4 magnifications (40X, 100X, 200X, 400X, and Complete Dataset). Thus we evaluated the proposed Deep Learning model and 5 pre-trained models using each dataset individually. That means we carried out a total of 30 experiments. The measurement that was used in the evaluation of all models includes: F1-score, recall, precision, accuracy.
RESULTS: The classification F1-score accuracies of Xception, InceptionV3, ResNet50, VGG16, MobileNet, and Proposed Model (BCCNN) were 97.54%, 95.33%, 98.14%, 97.67%, 93.98%, and 98.28%, respectively.
CONCLUSION: Dataset Boosting, preprocessing and balancing played a good role in enhancing the detection and classification of breast cancer of the proposed model (BCCNN) and the fine-tuned pre-trained models' accuracies greatly. The best accuracies were attained when the 400X magnification of the MRI images due to their high images resolution.