Displaying all 2 publications

Abstract:
Sort:
  1. Ramzan M, Abusalah MAHA, Ahmed N, Yean CY, Zeshan B
    Int J Nanomedicine, 2024;19:13319-13338.
    PMID: 39679248 DOI: 10.2147/IJN.S475656
    BACKGROUND AND PURPOSE: Antimicrobial resistance (AMR) has emerged as a significant global concern. To combat this growing threat, various strategies have been employed, including the use of plant extracts and the biosynthesis of nanoparticles (NPs). The current study was designed to evaluate the phytochemical analysis of ginger (Zingiber officinale) extracts, characterize the silver nanoparticles (AgNPs) and to see their antibacterial potentials against multi-drug resistant (MDR) bacterial strains.

    METHODS: The extracts were prepared and initially assessed for their phytochemical composition and antibacterial activity. Then, AgNPs were synthesized from these extracts at room temperature, and various analytical techniques, including UV-visible spectroscopy, X-ray diffraction (XRD), ATIR-FTIR, zeta sizer, scanning electron microscopy (SEM), and energy-dispersive X-ray analysis (EDXA), were used to characterize the NPs. After confirmation of prepared NPs, they were subjected to their antibacterial activity.

    RESULTS: HPLC analysis demonstrated the presence of eight phytoconstituents in organic ginger extracts. The absorption spectra of the silver suspension exhibited surface plasmon resonance peaks with maxima between 420 and 448 nm. Functional groups like C-H, N-H, OH, C-O-C, C=O, and C-O were identified in both the organic and aqueous extracts of Z. officinale, playing a key role in the formation of AgNPs, as characterized by ATR-FTIR analysis. Both ginger organic and aqueous extract synthesized AgNPs crystalline structure was shown in XRD analysis and the particle size distribution showed average diameter of 200.5 nm of AgNPs from aqueous extracts. Scanning Electron Microscopy displayed spherical structure and EDA results showed the percentage of elements in synthesized AgNPs using plant extracts. Most promising antibacterial activity was obtained against Escherichia coli ie 20.83±0.53 for 100 µg/mL.

    CONCLUSION: The results of the current study showed that AgNPs synthesized from different ginger extracts have promising antibacterial properties and can be potential candidates for alternative treatment options for bacterial infections.

  2. Perveen I, Bukhari B, Najeeb M, Nazir S, Faridi TA, Farooq M, et al.
    Biomedicines, 2023 Jul 04;11(7).
    PMID: 37509530 DOI: 10.3390/biomedicines11071892
    Molecular hydrogen is renowned as an odorless and colorless gas. The recommendations developed by China suggest that the inhalation of hydrogen molecules is currently advised in COVID-19 pneumonia treatment. The therapeutic effects of molecular hydrogens have been confirmed after numerous clinical trials and animal-model-based experiments, which have expounded that the low molecular weight of hydrogen enables it to easily diffuse and permeate through the cell membranes to produce a variety of biological impacts. A wide range of both chronic and acute inflammatory diseases, which may include sepsis, pancreatitis, respiratory disorders, autoimmune diseases, ischemia-reperfusion damages, etc. may be treated and prevented by using it. H2 can primarily be inoculated through inhalation, by drinking water (which already contains H2), or by administrating the injection of saline H2 in the body. It may play a pivotal role as an antioxidant, in regulating the immune system, in anti-inflammatory activities (mitochondrial energy metabolism), and cell death (apoptosis, pyroptosis, and autophagy) by reducing the formation of excessive reactive O2 species and modifying the transcription factors in the nuclei of the cells. However, the fundamental process of molecular hydrogen is still not entirely understood. Molecular hydrogen H2 has a promising future in therapeutics based on its safety and possible usefulness. The current review emphasizes the antioxidative, anti-apoptotic, and anti-inflammatory effects of hydrogen molecules along with the underlying principle and fundamental mechanism involved, with a prime focus on the coronavirus disease of 2019 (COVID-19). This review will also provide strategies and recommendations for the therapeutic and medicinal applications of the hydrogen molecule.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links