Displaying 1 publication

Abstract:
Sort:
  1. Mat Yunin MYA, Mohd Adenam N, Khairul WM, Yusoff AH, Adli HK
    Polymers (Basel), 2022 Apr 30;14(9).
    PMID: 35567022 DOI: 10.3390/polym14091853
    Changes in physical properties of (H2C=C(CH3)CO2CH2CH2NH3)2PbI2Cl2 and (H2C=C(CH3)CO2CH2CH2NH3)2Pb(NO3)2Cl2 (2D) perovskite materials from iodide-based (I-AMP) and nitrate-based (N-AMP) leads were investigated at different durations (days) for various storage conditions. UV-Vis spectra of both samples showed an absorption band of around λmax 420 nm due to the transition of n to π* of ethylene (C=C) and amine (NH2). XRD perovskite peaks could be observed at approximately 25.35° (I-AMP) and 23.1° (N-AMP). However, a major shift in I-AMP and dramatic changes in the crystallite size, FHWM and crystallinity percentage highlighted the instability of the iodide-based material. In contrast, N-AMP showed superior stability with 96.76% crystallinity even at D20 under the S condition. Both materials were exposed to ammonia (NH3) gas, and a new XRD peak of ammonium lead iodide (NH4PbI3) with a red-shifted perovskite peak (101) was observed for the case of I-AMP. Based on the FWHM, crystallite size, crystallinity and lattice strain analysis, it can be concluded N-AMP's stability was maintained even after a few days of exposure to the said gases. These novel nitrate-based lead perovskite materials exhibited great potential for stable perovskite 2D materials and recorded less toxicity compared to famous lead iodide (PbI2) material.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links