OBJECTIVE: In order to address this issue, we analyzed how leg muscle activity is related to the variations of the path of movement.
METHOD: Since the electromyography (EMG) signal is a feature of muscle activity and the movement path has complex structures, we used entropy analysis in order to link their structures. The Shannon entropy of EMG signal and walking path are computed to relate their information content.
RESULTS: Based on the obtained results, walking on a path with greater information content causes greater information content in the EMG signal which is supported by statistical analysis results. This allowed us to analyze the relation between muscle activity and walking path.
CONCLUSION: The method of analysis employed in this research can be applied to investigate the relation between brain or heart reactions and walking path.
OBJECTIVE: In this research we benefit from fractal analysis to study the effect of complexity of path of movement on the complexity of human brain reaction.
METHODS: For this purpose we calculate the fractal dimension of the electroencephalography (EEG) signal when subjects walk on different paths with different fractal dimensions (complexity).
RESULTS: The results of the analysis show that the complexity of brain activity increases with the increment of complexity of path of movement.
CONCLUSION: The method of analysis employed in this research can also be employed to analyse the reaction of the human heart and respiration when subjects move on paths with different complexities.