Displaying all 2 publications

Abstract:
Sort:
  1. Habibi N, Mustafa AS, Nasser K, Al-Obaid I, Alfouzan W, Uddin S, et al.
    Mol Biol Rep, 2025 Feb 15;52(1):233.
    PMID: 39954144 DOI: 10.1007/s11033-025-10353-1
    BACKGROUND: Acinetobacter baumannii is a notorious nosocomial pathogen universally in healthcare settings. Its natural competent characteristics for genetic recombination are responsible for acquired antibiotic resistance and render it untreatable through commonly used antibiotics. Hence, characterizing the A. baumannii genomes for multidrug resistance carriage is of paramount importance. The study aimed to characterize the whole genome of clinical isolates of A. baumannii to identify specifically the types of antibiotic resistance genes, drug classes and mobile genetic elements. We also aimed to determine the significant multi-locus sequence tags (MLSTs). The phylogeny of the isolates was established with other clinical strains distributed globally.

    METHODS AND RESULTS: Fifteen clinical isolates (isolated from tracheal secretion, urine and bronchoalveolar lavage) were subjected to whole genome sequencing. Raw sequences were assembled using SPAdes and species were identified using KmerFinder 3.2. The assembled genomes were annotated using the Prokka v1.14.6. Resfinder 4.6.0 was used to determine antibiotic resistance genes. The sequences were aligned against seven housekeeping genes aka sequence tags (STs) available within the MLST database (v 2.0.9). MobileGeneticElement finder (v1.0.3) were used for profiling mobile genetic elements associated with the antibiotic resistance genes. The genomes of nosocomial A. baumannii were assembled with an average N50 of 23,480 and GC content of 38%. There were approximately 3700 CDs, 53 tRNA and 3 rRNA. About 80% of the isolates were ST2 type. The genomes possessed antibiotic resistance genes (n = 24) belonging to 17 drug classes. The predicted phenotype was multidrug resistant. Among the mobile genetic elements, 12 insertion sequences and 2 composite transposons were also found. The mode of antibiotic resistance was mostly through antibiotic inactivation in all the isolates.

    CONCLUSIONS: The results imply the occurrence of multidrug resistant genes in clinical isolates of A. baumannii strains in the healthcare settings of Kuwait. A more comprehensive survey should be undertaken for antimicrobial resistance monitoring on a regular basis for surveillance, contact tracing, and potential mitigation in clinical settings.

  2. Spruijtenburg B, Ahmad S, Asadzadeh M, Alfouzan W, Al-Obaid I, Mokaddas E, et al.
    Mycoses, 2023 Dec;66(12):1079-1086.
    PMID: 37712885 DOI: 10.1111/myc.13655
    Candida auris is an emerging, multidrug-resistant yeast, causing outbreaks in healthcare facilities. Echinocandins are the antifungal drugs of choice to treat candidiasis, as they cause few side effects and resistance is rarely found. Previously, immunocompromised patients from Kuwait with C. auris colonisation or infection were treated with echinocandins, and within days to months, resistance was reported in urine isolates. To determine whether the development of echinocandin resistance was due to independent introductions of resistant strains or resulted from intra-patient resistance development, whole genome sequencing (WGS) single-nucleotide polymorphism (SNP) analysis was performed on susceptible (n = 26) and echinocandin-resistant (n = 6) isolates from seven patients. WGS SNP analysis identified three distinct clusters differing 17-127 SNPs from two patients, and the remaining isolates from five patients, respectively. Sequential isolates within patients had a maximum of 11 SNP differences over a time period of 1-10 months. The majority of isolates with reduced susceptibility displayed unique FKS1 substitutions including a novel FKS1M690V substitution, and nearly all were genetically related, ranging from only three to six SNP differences compared to susceptible isolates from the same patient. Resistant isolates from three patients shared the common FKS1S639F substitution; however, WGS analysis did not suggest a common source. These findings strongly indicate that echinocandin resistance is induced during antifungal treatment. Future studies should determine whether such echinocandin-resistant strains are capable of long-term colonisation, cause subsequent breakthrough candidiasis, have a propensity to cross-infect other patients, or remain viable for longer time periods in the hospital environment.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links