Displaying all 2 publications

Abstract:
Sort:
  1. Chai BK, Al-Shagga M, Pan Y, Then SM, Ting KN, Loh HS, et al.
    Lipids, 2019 06;54(6-7):369-379.
    PMID: 31124166 DOI: 10.1002/lipd.12154
    Dysregulated hepatic gluconeogenesis is a hallmark of insulin resistance and type 2 diabetes mellitus (T2DM). Although existing drugs have been proven to improve gluconeogenesis, achieving this objective with functional food is of interest, especially using conjugated linoleic acid (CLA) found in dairy products. Both cis-9, trans-11 (c9,t11) and trans-10, cis-12 (t10,c12) isomers of CLA were tested in human (HepG2) and rat (H4IIE) hepatocytes for their potential effects on gluconeogenesis. The hepatocytes exposed for 24 h with 20 μM of c9,t11-CLA had attenuated the gluconeogenesis in both HepG2 and H4IIE by 62.5% and 80.1%, respectively. In contrast, t10,c12-CLA had no effect. Of note, in HepG2 cells, the exposure of c9,t11-CLA decreased the transcription of gluconeogenic enzymes, cytosolic phosphoenolpyruvate carboxykinase (PCK1) by 87.7%, and glucose-6-phosphatase catalytic subunit (G6PC) by 38.0%, while t10,c12-CLA increased the expression of G6PC, suggesting the isomer-specific effects of CLA on hepatic glucose production. In HepG2, the peroxisome proliferator-activated receptor (PPAR) agonist, rosiglitazone, reduced the glucose production by 72.9%. However, co-administration of c9,t11-CLA and rosiglitazone neither exacerbated nor attenuated the efficacy of rosiglitazone to inhibit glucose production; meanwhile, t10,c12-CLA abrogated the efficacy of rosiglitazone. Paradoxically, PPARγ antagonist GW 9662 also led to 70.2% reduction of glucose production and near undetectable PCK1 expression by abrogating CLA actions. Together, while the precise mechanisms by which CLA isomers modulate hepatic gluconeogenesis directly or via PPAR warrant further investigation, our findings establish that c9,t11-CLA suppresses gluconeogenesis by decreasing PEPCK on hepatocytes.
  2. Lim SYM, Binti Azidin AR, Ung YT, Al-Shagga M, Alshawsh MA, Mohamed Z, et al.
    Eur J Drug Metab Pharmacokinet, 2019 Jun;44(3):423-431.
    PMID: 30306496 DOI: 10.1007/s13318-018-0518-2
    BACKGROUND AND OBJECTIVE: A significant number of people worldwide consume khat on daily basis. Long term of khat chewing has shown negative impact on several organ systems. It is likely that these people are co-administered khat preparations and conventional medication, which may lead to khat-drug interactions. This study aimed to reveal the inhibitory potencies of khat ethanol extract (KEE) and its major active ingredient (cathinone) on human cytochrome P450 (CYP) 2C9, CYP2D6, and CYP3A4 enzymes activities, which are collectively responsible for metabolizing 70-80% clinically used drugs.

    METHODS: In vitro fluorescence-based enzyme assays were developed and the CYP enzyme activities were quantified in the presence and absence of KEE and cathinone employing Vivid® CYP450 Screening Kits.

    RESULTS: KEE inhibited human CYP2C9, CYP2D6, and CYP3A4 enzyme activities with IC50 of 42, 62, and 18 μg/ml. On the other hand, cathinone showed negligible inhibitory effect on these CYPs. Further experiments with KEE revealed that KEE inhibited CYP2C9 via non-competitive or mixed mode with Ki of 14.7 μg/ml, CYP2D6 through competitive or mixed mode with Ki of 17.6 μg/ml, CYP3A4 by mixed inhibition mode with Ki of 12.1 μg/ml.

    CONCLUSION: Khat-drug interactions are possible due to administration of clinical drugs metabolized by CYP2C9/CYP2D6/CYP3A4 together with khat chewing. Further in vivo studies are required to confirm our findings and identify the causative constituents of these inhibitory effects.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links