Displaying all 2 publications

Abstract:
Sort:
  1. Albujja MH, Vasudevan R, Alghamdi S, Pei CP, Bin Mohd Ghani KA, Ranneh Y, et al.
    Prostate Int, 2020 Dec;8(4):135-145.
    PMID: 33425790 DOI: 10.1016/j.prnil.2019.11.003
    Prostate cancer (PCa) is a challenging polygenic disease because the genes that cause PCa remain largely elusive and are affected by several causal factors. Consequently, research continuously strives to identify a genetic marker which could be used as an indicator to predict the most vulnerable (i.e., predisposed) segments of the population to the disease or for the gene which may be directly responsible for PCa. To enhance the genetic etiology of PCa, this research sought to discover the key studies conducted in this field using data from the main journal publication search engines, as it was hoped that this could shed light on the main research findings from these studies, which in turn could assist in determining these genes or markers. From the research highlighted, the studies primarily used two kinds of markers: short tandem repeats or single-nucleotide polymorphisms. These markers were found to be quite prevalent in all the chromosomes within the research carried out. It also became apparent that the studies differed in both quantity and quality, as well as being conducted in a variety of societies. Links were also determined between the degree and strength of the relationship between these markers and the occurrence of the disease. From the studies identified, most recommended a larger and more diverse survey for the parameters which had not been studied before, as well as an increase in the size of the community (i.e., the population) being studied. This is an indication that work in this field is far from complete, and thus, current research remains committed toward finding genetic markers that can be used clinically for the diagnosis and screening of patients with PCa.
  2. Albujja MH, Messaudi SA, Vasudevan R, Al Ghamdi S, Chong PP, Ghani KA, et al.
    Asian Pac J Cancer Prev, 2020 08 01;21(8):2271-2280.
    PMID: 32856855 DOI: 10.31557/APJCP.2020.21.8.2271
    BACKGROUND: The X-chromosome has been suggested to play a role in prostate cancer (PrCa) since epidemiological studies have provided evidence for an X-linked mode of inheritance for PrCa based on the higher relative risk among men who report an affected brother(s) as compared to those reporting an affected father. The aim of this study was to examine the potential association between the forensic STR markers located at four regions Xp22.31, Xq11.2-12, Xq26.2, and Xq28 and the risk of BPH and PrCa to confirm the impact of ChrX in the PrCa incidence. This may be helpful in the incorporation of STRs genetic variation in the early detection of men population at risk of developing PrCa.

    METHODS: DNA samples from 92 patients and 156 healthy controls collected from two medical centers in Riyadh, Saudi Arabia were analyzed for four regions located at X-chromosome using the Investigator® Argus X-12 QS Kit.

    RESULTS: The results demonstrated that microvariant alleles of (DXS7132, DXS10146, HPRTB, DXS10134, and DXS10135) are overrepresented in the BPH group (p < 0.00001). Allele 28 of DXS10135 and allele 15 of DXS7423 could have a protective effect, OR 0.229 (95%CI, 0.066-0.79); and OR 0.439 (95%CI, 0.208-0.925). On the other hand, patients carrying allele 23 of DXS10079 and allele 26 of DXS10148 presented an increased risk to PrCa OR 4.714 (95%CI, 3.604-6.166).

    CONCLUSION: The results are in concordance with the involvement of the X chromosome in PrCa and BPH development. STR allele studies may add further information from the definition of a genetic profile of PrCa resistance or susceptibility. As TBL1, AR, LDOC1, and RPL10 genes are located at regions Xp22.31, Xq11.2-12, Xq26.2, and Xq28, respectively, these genes could play an essential role in PrCa or BPH.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links