Displaying all 3 publications

Abstract:
Sort:
  1. Alzahrani JS, Almuqrin A, Alghamdi H, Albarzan B, Khandaker MU, Sayyed MI
    Mar Pollut Bull, 2021 Nov 22.
    PMID: 34823865 DOI: 10.1016/j.marpolbul.2021.113146
    We studied the concentrations of terrestrial and anthropogenic radionuclides in seawater and shore sediment/sand of three selected regions; Khafji, Safaniyah and Menifah along the Saudi Arabian Gulf coast. The mean activity concentrations of the 228Ra, 226Ra, and 40K in the analyzed sand samples are 5.9, 3.5 and 113.5 Bq/kg, and the respective values in seawater samples are 1.6, 0.8 and 10.4 Bq/L. All data show lower than the corresponding UNSCEAR (2000) reported world average values of 35, 30 and 400 Bq/kg for soil matrix. A few relevant radiological hazards were quantified by the estimation of the absorbed dose rate, and the results are compared with the prescribed limits set by international regulatory bodies. Measured data indicates that the studied coastal regions pose a negligible radiological hazards to the public, and show an insignificant radioactive loading to this coastal region by the Busher nuclear power plant.
  2. Alhawari ARH, Majeed SF, Saeidi T, Mumtaz S, Alghamdi H, Hindi AT, et al.
    Micromachines (Basel), 2021 Apr 07;12(4).
    PMID: 33917167 DOI: 10.3390/mi12040411
    The increasing needs of free licensed frequency bands like Industrial, Scientific, and Medical (ISM), Wireless Local Area Network (WLAN), and 5G for underwater communications required more bandwidth (BW) with higher data transferring rate. Microwaves produce a higher transferring rate of data, and their associated devices are smaller in comparison with sonar and ultrasonic. Thus, transceivers should have broad BW to cover more of a frequency band, especially from ultra-wideband (UWB) systems, which show potential outcomes. However, previous designs of similar work for underwater communications were very complicated, uneasy to fabricate, and large. Therefore, to overcome these shortcomings, a novel compact elliptical UWB antenna is designed to resonate from 1.3 to 7.2 GHz. It is invented from a polytetrafluoroethylene (PTFE) layer with a dielectric constant of 2.55 mm and a thickness of 0.8 mm. The proposed antenna shows higher gain and radiation efficiency and stability throughout the working band when compared to recent similarly reported designs, even at a smaller size. The characteristics of the functioning antenna are investigated through fluid mediums of fresh-water, seawater, distilled water, and Debye model water. Later, its channel capacity, bit rate error, and data rate are evaluated. The results demonstrated that the antenna offers compact, easier fabrication with better UWB characteristics for underwater 5G communications.
  3. Alhawari ARH, Saeidi T, Almawgani AHM, Hindi AT, Alghamdi H, Alsuwian T, et al.
    Micromachines (Basel), 2021 Dec 14;12(12).
    PMID: 34945409 DOI: 10.3390/mi12121559
    A low-profile Multiple Input Multiple Output (MIMO) antenna showing dual polarization, low mutual coupling, and acceptable diversity gain is presented by this paper. The antenna introduces the requirements of fifth generation (5G) and the satellite communications. A horizontally (4.8-31 GHz) and vertically polarized (7.6-37 GHz) modified antipodal Vivaldi antennas are simulated, fabricated, and integrated, and then their characteristics are examined. An ultra-wideband (UWB) at working bandwidths of 3.7-3.85 GHz and 5-40 GHz are achieved. Low mutual coupling of less than -22 dB is achieved after loading the antenna with cross-curves, staircase meander line, and integration of the metamaterial elements. The antennas are designed on a denim textile substrate with εr = 1.4 and h = 0.5 mm. A conductive textile called ShieldIt is utilized as conductor with conductivity of 1.8 × 104. After optimizing the proposed UWB-MIMO antenna's characteristics, it is increased to four elements positioned at the four corners of a denim textile substrate to be employed as a UWB-MIMO antenna for handset communications, 5G, Ka and Ku band, and satellite communications (X-band). The proposed eight port UWB-MIMO antenna has a maximum gain of 10.7 dBi, 98% radiation efficiency, less than 0.01 ECC, and acceptable diversity gain. Afterwards, the eight-ports antenna performance is examined on a simulated real voxel hand and chest. Then, it is evaluated and compared on physical hand and chest of body. Evidently, the simulated and measured results show good agreement between them. The proposed UWB-MIMO antenna offers a compact and flexible design, which is suitably wearable for 5G and satellite communications applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links