Displaying all 2 publications

Abstract:
Sort:
  1. Alhajj M, Aziz MSA, Huyop F, Salim AA, Sharma S, Ghoshal SK
    Biomater Adv, 2022 Nov;142:213136.
    PMID: 36206587 DOI: 10.1016/j.bioadv.2022.213136
    This paper reports the characterization and antibacterial performance evaluation of some spherical and stable crystalline silver (Ag)/copper (Cu) nanocomposites (Ag-CuNCs) prepared in deionized water (DIW) using pulse laser ablation in liquid (PLAL) method. The influence of various laser fluences (LFs) on the structural, morphological, optical and antibacterial properties of these NCs were determined. The UV-Vis absorbance of these NCs at 403 nm and 595 nm was gradually increased accompanied by a blue shift. XRD patterns disclosed the nucleation of highly crystalline Ag-CuNCs with their face centered cubic lattice structure. TEM images showed the existence of spherical NCs with size range of 3-20 nm and lattice fringe spacing of approximately 0.145 nm. EDX profiles of Ag-CuNCs indicated their high purity. The antibacterial effectiveness of the Ag-CuNCs was evaluated by the inhibition zone diameter (IZD) and optical density (OD600) tests against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. The proposed NCs revealed the IZD values in the range of 22-26 mm and 20-25 mm when tested against E. coli and S. aureus bacteria, respectively. The Ag-CuNCs prepared at LF of 14.15 J/cm2 revealed the best bactericidal activity. It is established that by controlling the laser fluence the bactericidal effectiveness of the Ag-CuNCs can be tuned.
  2. Mofreh Altarawneh H, Nasser Alhajj M, Mohd Salleh N, Elkezza AHH, Adida Mahmood W
    Acta Stomatol Croat, 2023 Dec;57(4):329-338.
    PMID: 38283308 DOI: 10.15644/asc57/4/4
    OBJECTIVES: This study aimed to assess the color stability, surface roughness, and flexural properties of the injection-molded thermoplastic polyamide Vertex ThermoSens denture base resin following a 3-minute immersion in Polident 3-minute denture cleanser.

    METHODS: Sixty specimens (Vertex ThermoSens) were processed and divided into two main groups (n = 30) based on the type of test. Group 1 was further subdivided into two subgroups (n = 15): the control group immersed in distilled water (G1DW) and the test group immersed in Polident cleanser solution (G1PD). Group 2 was divided into three subgroups: a non-immersed group (G2None), a group immersed in distilled water (G2DW), and a group immersed in Polident cleanser solution (G2PD). Color change (∆E) and surface roughness measurements were conducted for group 1, and flexural modulus (E) test was performed for group 2. The CIE Lab* formula was utilized to calculate ∆E. An optical 3D surface analyzer and a three-point bending test were employed for surface roughness and E assessments, respectively. Data were subjected to statistical analysis using a paired-sample t-test for differences within each group before and after immersion. Furthermore, independent-sample t-tests and one-way ANOVA were conducted to analyze differences between groups. A significance level of P < 0.05 was considered.

    RESULTS: The results revealed a slight, statistically insignificant (P > 0.05) ∆E in all color components (L*, a*, b*) after immersion in distilled water. However, after immersion in the denture cleanser, only the L* component exhibited a statistically significant ∆E (P = 0.002), which was slight in magnitude. Additionally, a significant difference was found in the ∆E between G1DW and G1PD, with G1PD showing a higher change (P = 0.007). A significant increase in surface roughness after immersion was observed in G1PD (P = 0.017), with a notable difference between G1DW and G1PD. However, the E remained unaffected (P = 0.537).

    CONCLUSION: Denture cleansers have the potential to modify the properties of thermoplastic polyamide resin. Further research is needed to explore the clinical implications of these observed changes on denture performance.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links