Displaying all 2 publications

Abstract:
Sort:
  1. Alhalawani AM, Towler MR
    J Biomater Appl, 2013 Nov;28(4):483-97.
    PMID: 23812580 DOI: 10.1177/0885328213495426
    Sternotomy and sternal closure occur prior to and post cardiac surgery, respectively. Although post-operative complications associated with poor sternal fixation can result in morbidity, mortality, and considerable resource utilization, sternotomy is preferred over other methods such as lateral thoracotomy. Rigid sternal fixation is associated with stability and reduced incidence of post-operative complications. This is a comprehensive review of the literature evaluating in vivo, in vitro, and clinical responses to applying commercial and experimental surgical tools for sternal fixation after median sternotomy. Wiring, interlocking, plate-screw, and cementation techniques have been examined for closure, but none have experienced widespread adoption. Although all techniques have their advantages, serious post-operative complications were associated with the use of wiring and/or plating techniques in high-risk patients. A fraction of studies have analyzed the use of sternal interlocking systems and only a single study analyzed the effect of using kryptonite cement with wires. Plating and interlocking techniques are superior to wiring in terms of stability and reduced rate of post-operative complications; however, further clinical studies and long-term follow-up are required. The ideal sternal closure should ensure stability, reduced rate of post-operative complications, and a short hospitalization period, alongside cost-effectiveness.
  2. Alhalawani AM, Curran DJ, Pingguan-Murphy B, Boyd D, Towler MR
    J Funct Biomater, 2013;4(4):329-57.
    PMID: 24956193 DOI: 10.3390/jfb4040329
    This study investigates the use of gallium (Ga) based glass polyalkenoate cements (GPCs) as a possible alternative adhesive in sternal fixation, post sternotomy surgery. The glass series consists of a Control (CaO-ZnO-SiO2), and LGa-1 and LGa-2 which contain Ga at the expense of zinc (Zn) in 0.08 mol% increments. The additions of Ga resulted in increased working time (75 s to 137 s) and setting time (113 to 254 s). Fourier Transform Infrared (FTIR) analysis indicated that this was a direct result of increased unreacted poly(acrylic acid) (PAA) and the reduction of crosslink formation during cement maturation. LGa samples (0.16 wt % Ga) resulted in an altered ion release profile, particularly for 30 days analysis, with maximum Ca2+, Zn2+, Si4+ and Ga3+ ions released into the distilled water. The additions of Ga resulted in increased roughness and decreased contact angles during cement maturation. The presence of Ga has a positive effect on the compressive strength of the samples with strengths increasing over 10 MPa at 7 days analysis compared to the 1 day results. The additions of Ga had relatively no effect on the flexural strength. Tensile testing of bovine sterna proved that the LGa samples (0.16 wt % Ga) are comparable to the Control samples.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links