Displaying all 9 publications

Abstract:
Sort:
  1. Md Ali AR
    Int J Food Sci Nutr, 1996 Jan;47(1):15-22.
    PMID: 8616668
    Two types of palm oil and sal fat based cocoa butter equivalents, namely fCBE (produced by using co-fractionation method) and mCBE (produced by using conventional method) were prepared. Results showed that the fCBE had triglyceride composition and solidification characteristics closer to the Malaysian cocoa butter than the mCBE produced at the same yield percentage. Increasing acetone washing time had little effect on the fCBE if compared to the effect of increasing palm olein to sal fat blend ratio. Co-fractionation technique increase the compatibility between CBE component triglycerides. Thus, more palm oil can be incorporated in the preparation and the process can be carried out at not low temperature as compared to the conventional method.
  2. Sabariah S, Ali AR, Chong CL
    Int J Food Sci Nutr, 1998 May;49(3):211-8.
    PMID: 10616663
    Commercial samples of Malaysian cocoa butter (MCB), anhydrous milkfat (AMF), high melting fraction milkfat42 (HMF42) and cocoa butter equivalent (CBE) were blended in binary and ternary blends. All the fats were then evaluated for their solid fat content, thermal analyses and polymorphic stability. MCB possessed the highest solid followed by CBE, HMF42 and AMF. Data on thermal analyses showed that eutectic interaction was more noticeable when AMF and HMF42 were present in the MCB and CBE system. Moreover, X-ray diffraction patterns also showed that AMF and HMF42 exhibit the presence of beta' polymorph while MCB and CBE exhibit beta polymorph.
  3. Norlida HM, Md Ali AR, Muhadhir I
    Int J Food Sci Nutr, 1996 Jan;47(1):71-4.
    PMID: 8616676
    Palm oil (PO ; iodin value = 52), palm stearin (POs1; i.v. = 32 and POs2; i.v. = 40) and palm kernel oil (PKO; i.v. = 17) were blended in ternary systems. The blends were then studied for their physical properties such as melting point (m.p.), solid fat content (SFC), and cooling curve. Results showed that palm stearin increased the blends melting point while palm kernel oil reduced it. To produce table margarine with melting point (m.p.) below 40 degrees C, the POs1 should be added at level of < or = 16%, while POs2 at level of < or = 20%. At 10 degrees C, eutectic interaction occur between PO and PKO which reach their maximum at about 60:40 blending ratio. Within the eutectic region, to maintain the SFC at 10 degrees C to be < or = 50%, POs1 may be added at level of < or = 7%, while POs2 at level of < or = 12%. The addition of palm stearin increased the blends solidification Tmin and Tmax values, while PKO reduced them. Blends which contained high amount of palm stearin showed melting point and cooling curves quite similar to that of pastry margarine.
  4. Chang LY, Ali AR, Hassan SS, AbuBakar S
    Virol J, 2007;4:54.
    PMID: 17553172
    Nipah virus (NiV), a recently discovered zoonotic virus infects and replicates in several human cell types. Its replication in human neuronal cells, however, is less efficient in comparison to other fully susceptible cells. In the present study, the SK-N-MC human neuronal cell protein response to NiV infection is examined using proteomic approaches.
  5. Chang LY, Ali AR, Hassan SS, AbuBakar S
    J Med Virol, 2006 Aug;78(8):1105-12.
    PMID: 16789019
    Nipah virus infection of porcine stable kidney cells (PS), human neuronal cells (SK-N-MC), human lung fibroblasts cells (MRC-5), and human monocytes (THP-1) were examined. Rapid progression of cytopathic effects (CPE) and cell death were noted in PS cell cultures treated with Nipah virus, followed by MRC-5, SK-N-MC, and THP-1 cell cultures, in descending order of rapidity. Significant increase in the intracellular Nipah virus RNA occurred beginning at 24 hr PI in all the infected cells. Whereas, the extracellular release of Nipah virus RNA increased significantly beginning at 48 and 72 hr PI for the infected MRC-5 cells and PS cells, respectively. No significant release of extracellular Nipah virus RNA was detected from the Nipah virus-infected SK-N-MC and THP-1 cells. At its peak, approximately 6.6 log PFU/microl of extracellular Nipah virus RNA was released from the Nipah virus-infected PS cells, with at least a 100-fold less virus RNA was recorded in the Nipah virus-infected SK-N-MC and THP-1. Approximately 15.2% (+/-0.1%) of the released virus from the infected PS cell cultures was infectious in contrast to approximately 5.5% (+/-0.7%) from the infected SK-N-MC cells. The findings suggest that there are no differences in the capacity to support Nipah virus replication between pigs and humans in fully susceptible PS and MRC-5 cells. However, there are differences between these cells and human neuronal cells and monocytes in the ability to support Nipah virus replication and virus release.
  6. Chang LY, Ali AR, Hassan SS, AbuBakar S
    Virol J, 2006;3:47.
    PMID: 16784519
    Nipah virus is a zoonotic virus isolated from an outbreak in Malaysia in 1998. The virus causes infections in humans, pigs, and several other domestic animals. It has also been isolated from fruit bats. The pathogenesis of Nipah virus infection is still not well described. In the present study, Nipah virus replication kinetics were estimated from infection of African green monkey kidney cells (Vero) using the one-step SYBR Green I-based quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) assay.
  7. Kono Y, Yusnita Y, Mohd Ali AR, Maizan M, Sharifah SH, Fauzia O, et al.
    Arch Virol, 2002 Aug;147(8):1623-30.
    PMID: 12181680
    A virus, named Oya virus, was isolated in Vero cell cultures from the lungs of a pig suspected of Nipah virus infection. The virus was revealed as a spherical enveloped RNA virus with a diameter of 79 nm. For identification of Oya virus, RT-PCR was performed. A common primer set for S-RNA of the Simbu serogroup of the genus Bunyavirus was able to amplify a cDNA from Oya virus RNA. The sequence data of the product revealed that the partial gene of Oya virus S-RNA segment had 65-70% homology with published cDNA sequences of Simbu serogroup viruses. The phylogenetic analysis of the data showed that the Oya virus is grouped in Simbu serogroup, but is genetically distinct from the serogroup viruses that have been analyzed molecularly. Serological surveys revealed that the virus distributed widely and densely in Malaysia.
  8. Sandosham AA, Fredericks HJ, Ponnampalam JT, Seow CL, Ismail O, Othman AM, et al.
    J Trop Med Hyg, 1975 Mar;78(3):54-8.
    PMID: 1095776
    Chloroquine resistance is a well established entity in South East Asia, and presents a problem of increasing importance. Strains of P. falciparum resistant to chloroquine have also been found to be resistant to amodiaquine and a combination of pyrimethamine and sulphadoxine. Knowledge of the drug sensitivity of the strains of malaria parasite in a given locality is important so that the right choice of drugs can be made in treatment of the disease. The treatment of chloroquine resistant malaria in West Malaysia is a subject of another paper but suffice it to say that increased doses of chloroquine have still been found to be effective in treating many cases of falciparum malaria from areas of chloroquine resistance.
  9. AbuBakar S, Chang LY, Ali AR, Sharifah SH, Yusoff K, Zamrod Z
    Emerg Infect Dis, 2004 Dec;10(12):2228-30.
    PMID: 15663869
    Nipah viruses from pigs from a Malaysian 1998 outbreak were isolated and sequenced. At least two different Nipah virus strains, including a previously unreported strain, were identified. The findings highlight the possibility that the Malaysia outbreaks had two origins of Nipah virus infections.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links