Displaying all 2 publications

Abstract:
Sort:
  1. Al-Qazzaz NK, Ali SHBM, Ahmad SA, Islam MS, Escudero J
    Med Biol Eng Comput, 2018 Jan;56(1):137-157.
    PMID: 29119540 DOI: 10.1007/s11517-017-1734-7
    Stroke survivors are more prone to developing cognitive impairment and dementia. Dementia detection is a challenge for supporting personalized healthcare. This study analyzes the electroencephalogram (EEG) background activity of 5 vascular dementia (VaD) patients, 15 stroke-related patients with mild cognitive impairment (MCI), and 15 control healthy subjects during a working memory (WM) task. The objective of this study is twofold. First, it aims to enhance the discrimination of VaD, stroke-related MCI patients, and control subjects using fuzzy neighborhood preserving analysis with QR-decomposition (FNPAQR); second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. Nineteen channels were recorded and analyzed using the independent component analysis and wavelet analysis (ICA-WT) denoising technique. Using ANOVA, linear spectral power including relative powers (RP) and power ratio were calculated to test whether the EEG dominant frequencies were slowed down in VaD and stroke-related MCI patients. Non-linear features including permutation entropy (PerEn) and fractal dimension (FD) were used to test the degree of irregularity and complexity, which was significantly lower in patients with VaD and stroke-related MCI than that in control subjects (ANOVA; p ˂ 0.05). This study is the first to use fuzzy neighborhood preserving analysis with QR-decomposition (FNPAQR) dimensionality reduction technique with EEG background activity of dementia patients. The impairment of post-stroke patients was detected using support vector machine (SVM) and k-nearest neighbors (kNN) classifiers. A comparative study has been performed to check the effectiveness of using FNPAQR dimensionality reduction technique with the SVM and kNN classifiers. FNPAQR with SVM and kNN obtained 91.48 and 89.63% accuracy, respectively, whereas without using the FNPAQR exhibited 70 and 67.78% accuracy for SVM and kNN, respectively, in classifying VaD, stroke-related MCI, and control patients, respectively. Therefore, EEG could be a reliable index for inspecting concise markers that are sensitive to VaD and stroke-related MCI patients compared to control healthy subjects.
  2. Al-Qazzaz NK, Alrahhal M, Jaafer SH, Ali SHBM, Ahmad SA
    Med Eng Phys, 2024 Aug;130:104206.
    PMID: 39160030 DOI: 10.1016/j.medengphy.2024.104206
    Epilepsy is one of the most common brain diseases, characterised by repeated seizures that occur on a regular basis. During a seizure, a patient's muscles flex uncontrollably, causing a loss of mobility and balance, which can be harmful or even fatal. Developing an automatic approach for warning patients of oncoming seizures necessitates substantial research. Analyzing the electroencephalogram (EEG) output from the human brain's scalp region can help predict seizures. EEG data were analyzed to extract time domain features such as Hurst exponent (Hur), Tsallis entropy (TsEn), enhanced permutation entropy (impe), and amplitude-aware permutation entropy (AAPE). In order to automatically diagnose epileptic seizure in children from normal children, this study conducted two sessions. In the first session, the extracted features from the EEG dataset were classified using three machine learning (ML)-based models, including support vector machine (SVM), K nearest neighbor (KNN), or decision tree (DT), and in the second session, the dataset was classified using three deep learning (DL)-based recurrent neural network (RNN) classifiers in The EEG dataset was obtained from the Neurology Clinic of the Ibn Rushd Training Hospital. In this regard, extensive explanations and research from the time domain and entropy characteristics demonstrate that employing GRU, LSTM, and BiLSTM RNN deep learning classifiers on the All-time-entropy fusion feature improves the final classification results.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links