Displaying all 2 publications

Abstract:
Sort:
  1. Alipour M, Sarafraz M, Chavoshi H, Bay A, Nematollahi A, Sadani M, et al.
    J Environ Sci (China), 2021 Feb;100:167-180.
    PMID: 33279029 DOI: 10.1016/j.jes.2020.07.014
    The contamination of fish type products such as silver pomfret fish fillets by potentially toxic elements (PTEs) has raised global health concerns. Related studies regarding the concentration of PTEs in fillets of silver pomfret fish were retrieved among some international databases such as Scopus, PubMed and Embase between 1 January 1983 and 10 March 2020. The pooled (mean) concentration of PTEs in fillets of silver pomfret fish was meta-analyzed with the aid of a random-effect model (REM). Also, the non-carcinogenic risk was estimated via calculating the 95th percentile of the total target hazard quotient (TTHQ). The meta-analysis of 21 articles (containing 25 studies or data reports) indicated that the ranking of PTEs in fillets of silver pomfret fish was Fe (11,414.81 µg/kg wet weight, ww) > Zn (6055.72 µg/kg ww) > Cr (1825.79 µg/kg ww) > Pb (1486.44 µg/kg ww) > Se (1053.47 µg/kg ww) > Cd (992.50 µg/kg ww) > Ni (745.23 µg/kg ww) > Cu (669.71 µg/kg ww) > total As (408.24 µg/kg ww) > Co (87.03 µg/kg ww) > methyl Hg (46.58 µg/kg ww). The rank order of health risk assessment by country based on the TTHQ for adult consumers was Malaysia (2.500) > Bangladesh (0.886) > Iran (0.144) > China (0.045) > Pakistan (0.020) > India (0.015), while the corresponding values for child consumers was Malaysia (11.790) > Bangladesh (4.146) > Iran (0.675) > China (0.206) > Pakistan (0.096) > India (0.077). The adult consumers in Malaysia and children in Malaysia and Bangladesh were at considerable non-carcinogenic risk. Therefore, following the recommended control plans in order to reduce the health risk associated with the ingestion of PTEs via consumption of silver pomfret fish fillets is crucial.
  2. Saida K, Maroofian R, Sengoku T, Mitani T, Pagnamenta AT, Marafi D, et al.
    Genet Med, 2023 Jan;25(1):90-102.
    PMID: 36318270 DOI: 10.1016/j.gim.2022.09.010
    PURPOSE: Brain monoamine vesicular transport disease is an infantile-onset movement disorder that mimics cerebral palsy. In 2013, the homozygous SLC18A2 variant, p.Pro387Leu, was first reported as a cause of this rare disorder, and dopamine agonists were efficient for treating affected individuals from a single large family. To date, only 6 variants have been reported. In this study, we evaluated genotype-phenotype correlations in individuals with biallelic SLC18A2 variants.

    METHODS: A total of 42 affected individuals with homozygous SLC18A2 variant alleles were identified. We evaluated genotype-phenotype correlations and the missense variants in the affected individuals based on the structural modeling of rat VMAT2 encoded by Slc18a2, with cytoplasm- and lumen-facing conformations. A Caenorhabditis elegans model was created for functional studies.

    RESULTS: A total of 19 homozygous SLC18A2 variants, including 3 recurrent variants, were identified using exome sequencing. The affected individuals typically showed global developmental delay, hypotonia, dystonia, oculogyric crisis, and autonomic nervous system involvement (temperature dysregulation/sweating, hypersalivation, and gastrointestinal dysmotility). Among the 58 affected individuals described to date, 16 (28%) died before the age of 13 years. Of the 17 patients with p.Pro237His, 9 died, whereas all 14 patients with p.Pro387Leu survived. Although a dopamine agonist mildly improved the disease symptoms in 18 of 21 patients (86%), some affected individuals with p.Ile43Phe and p.Pro387Leu showed milder phenotypes and presented prolonged survival even without treatment. The C. elegans model showed behavioral abnormalities.

    CONCLUSION: These data expand the phenotypic and genotypic spectra of SLC18A2-related disorders.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links