Displaying all 3 publications

Abstract:
Sort:
  1. Aliyu IA, Ling KH, Md Hashim N, Chee HY
    Rev Med Virol, 2019 05;29(3):e2038.
    PMID: 30746844 DOI: 10.1002/rmv.2038
    Annexin A2 is a membrane scaffolding and binding protein, which mediated various cellular events. Its functions are generally affected by cellular localization. In the cytoplasm, they interacted with different phospholipid membranes in Ca2+ -dependent manner and play vital roles including actin binding, remodeling and dynamics, cytoskeletal rearrangement, and lipid-raft microdomain formation. However, upon cell exposure to certain stimuli, annexin A2 translocates to the external leaflets of the plasma membrane where annexin A2 was recently reported to serve as a virus receptor, play an important role in the formation of virus replication complex, or implicated in virus assembly and budding. Here, we review some of annexin A2 roles in virus infections and the potentiality of targeting annexin A2 in the design of novel and promising antivirus agent that may have a broader consequence in virus therapy.
  2. Aliyu IA, Kumurya AS, Bala JA, Yahaya H, Saidu H
    Rev Med Virol, 2021 Sep;31(5):1-9.
    PMID: 33314425 DOI: 10.1002/rmv.2202
    Filopodia are thin finger-like protrusions at the surface of cells that are internally occupied with bundles of tightly parallel actin filaments. They play significant roles in cellular physiological processes, such as adhesion to extracellular matrix, guidance towards chemo-attractants and in wound healing. Filopodia were recently reported to play important roles in viral infection including initial viral attachment to host cells, cell surfing, viral trafficking, internalization, budding, virus release and spread to other cells in a form that would avoid the host immune system. The detailed virus-host protein interactions underlying most of these processes remain to be elucidated. This review will describe some reported virus-host protein interactions on filopodia with the aim of identifying potential new anti-virus therapeutic targets. Exploring this research area may lead to the development of novel classes of anti-viral therapeutics that can block signalling pathways used by the virus to trigger filopodia formation. Successful compounds would inhibit initial virus attachment, formation of filopodia, expression of putative virus binding protein, extracellular virus trafficking, and budding.
  3. Badamasi IM, Muhammad M, Umar AA, Madugu UM, Gadanya MA, Aliyu IA, et al.
    J Bras Pneumol, 2024;50(1):e20230338.
    PMID: 38359298 DOI: 10.36416/1806-3756/e20230338
    OBJECTIVE: To determine the role of the IL8 rs4073 polymorphism in predicting the risk of central nervous system (CNS) toxicity in patients receiving standard pharmacological treatment for multidrug-resistant tuberculosis (MDR-TB).

    METHODS: A cohort of 85 consenting MDR-TB patients receiving treatment with second-line antituberculosis drugs had their blood samples amplified for the IL8 (rs4073) gene and genotyped. All patients were clinically screened for evidence of treatment toxicity and categorized accordingly. Crude and adjusted associations were assessed.

    RESULTS: The chief complaints fell into the following categories: CNS toxicity; gastrointestinal toxicity; skin toxicity; and eye and ear toxicities. Symptoms of gastrointestinal toxicity were reported by 59% of the patients, and symptoms of CNS toxicity were reported by 42.7%. With regard to the genotypes of IL8 (rs4073), the following were identified: AA, in 64 of the study participants; AT, in 7; and TT, in 11. A significant association was found between the dominant model of inheritance and CNS toxicity for the crude model (p = 0.024; OR = 3.57; 95% CI, 1.18-10.76) and the adjusted model (p = 0.031; OR = 3.92; 95% CI, 1.13-13.58). The AT+TT genotype of IL8 (rs4073) showed a 3.92 times increased risk of CNS toxicity when compared with the AA genotype.

    CONCLUSIONS: The AT+TT genotype has a tendency to be associated with an increased risk of adverse clinical features during MDR-TB treatment.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links