Displaying all 6 publications

Abstract:
Sort:
  1. Almabhouh FA, Singh HJ
    Andrologia, 2018 Feb;50(1).
    PMID: 28497500 DOI: 10.1111/and.12814
    This study examines the effect of melatonin on leptin-induced changes in transition of histone to protamine in adult rats during spermatogenesis. Twelve-week-old Sprague-Dawley rats were randomised into control, leptin-, leptin-melatonin-10-, leptin-melatonin-20- and melatonin-10-treated groups with six rats per group. Leptin was given via intraperitoneal injections (i.p.) daily for 42 days (60 μg/kg body weight). Rats in the leptin- and melatonin-treated groups were given either 10 or 20 mg day-1  kg-1 body weight of leptin in drinking water. Melatonin-10-treated group received only 10 mg of melatonin day-1  kg-1 body weight in drinking water for 42 days. Control rats received 0.1 ml of 0.9% saline. Upon completion of the treatment, sperm count, morphology and histone-to-protamine ratio were estimated. Gene expression of HAT, HDAC1, HDAC2, H2B, H2A, H1, PRM1, PRM2, TNP1 and TNP2 was determined. Data were analysed using ANOVA. Sperm count was significantly lower, whereas the fraction of spermatozoa with abnormal morphology, the ratio of histone-to-protamine transition and the expressions of HAT, HDAC1, HDAC2, H2B, H2A, H1, PRM1 were significantly higher in leptin-treated rats than those in controls or melatonin-treated rats. It appears that exogenous leptin administration adversely affects histone-to-protamine transition, which is prevented by concurrent administration of melatonin.
  2. Almabhouh FA, Singh HJ
    Reprod Fertil Dev, 2023 May;35(8):459-468.
    PMID: 37196661 DOI: 10.1071/RD22222
    Despite its important role in numerous physiological functions, including regulation of appetite and body weight, immune function and normal sexual maturation, raised leptin levels could result in significant damaging effects on sperm. The adverse effects of leptin on the male reproductive system result from its direct actions on the reproductive organs and cells instead of the hypothalamus-pituitary-gonadal axis. Binding of leptin to the receptors in the seminiferous tubular cells of the testes increases free radical production and decreases the gene expression and activity of endogenous enzymatic antioxidants. These effects are mediated via the PI3K pathway. The resultant oxidative stress causes significant damage to the seminiferous tubular cells, germ cells and sperm DNA leading to apoptosis, increased sperm DNA fragmentation, decreased sperm count, increased fraction of sperm with abnormal morphology, and decreased seminiferous tubular height and diameter. This review summarises the evidence in the literature on the adverse effects of leptin on sperm, which could underlie the often-reported sperm abnormalities in obese hyperleptinaemic infertile males. Although leptin is necessary for normal reproductive function, its raised levels could be pathologic. There is, therefore, a need to identify the cut-off level in the serum and seminal fluid above which leptin becomes pathological for better management of leptin associated adverse effects on male reproductive function.
  3. Almabhouh FA, Osman K, Siti Fatimah I, Sergey G, Gnanou J, Singh HJ
    Andrologia, 2015 Sep;47(7):751-8.
    PMID: 25269426 DOI: 10.1111/and.12325
    Altered epididymal sperm count and morphology following leptin treatment has been reported recently. This study examined the effects of 42 days of leptin treatment on sperm count and morphology and their reversibility during a subsequent 56-day recovery period. Twelve-week-old male Sprague-Dawley rats were randomised into four leptin and four saline-treated control groups (n = 6). Intraperitoneal injections of leptin were given daily (60 μg Kg(-1) body weight) for 42 days. Controls received 0.1 ml of 0.9% saline. Leptin-treated animals and their respective age-matched controls were euthanised on either day 1, 21, 42 or 56 of recovery for collection of epididymal spermatozoa. Sperm concentration was determined using a Makler counting chamber. Spermatozoa were analysed for 8-hydroxy-2-deoxyguanosine and DNA fragmentation (Comet assay). Data were analysed using anova. Sperm concentration was significantly lower but fraction of abnormal spermatozoa, and levels of 8-hydroxy-2-deoxyguanosine were significantly higher in leptin-treated rats on day 1 of recovery. Comet assays revealed significant DNA fragmentation in leptin-treated rats. These differences were reduced by day 56 of recovery. It appears that 42 days of leptin treatment to Sprague-Dawley rats has significant adverse effects on sperm count and morphology that reverse following discontinuation of leptin treatment.
  4. Almabhouh FA, Osman K, Ibrahim SF, Gupalo S, Gnanou J, Ibrahim E, et al.
    Asian J Androl, 2016 10 18;19(6):647-654.
    PMID: 27748315 DOI: 10.4103/1008-682X.183379
    This study examined the effects of melatonin on leptin-induced changes in sperm parameters in adult rats. Five groups of Sprague-Dawley rats were treated with either leptin or leptin and melatonin or melatonin for 6 weeks. Leptin was given daily via the intraperitoneal route (60 μg kg-1 body weight) and melatonin was given in drinking water (10 mg kg-1 or 20 mg kg-1 body weight per day). Upon completion, sperm count, sperm morphology, 8-hydroxy-2-deoxyguanosine, Comet assay, TUNEL assay, gene expression profiles of antioxidant enzymes, respiratory chain reaction enzymes, DNA damage, and apoptosis genes were estimated. Data were analyzed using ANOVA. Sperm count was significantly lower whereas the fraction of sperm with abnormal morphology, the level of 8-hydroxy-2-deoxyguanosine, and sperm DNA fragmentation were significantly higher in rats treated with leptin only. Microarray analysis revealed significant upregulation of apoptosis-inducing factor, histone acetyl transferase, respiratory chain reaction enzyme, cell necrosis and DNA repair genes, and downregulation of antioxidant enzyme genes in leptin-treated rats. Real-time polymerase chain reaction showed significant decreases in glutathione peroxidase 1 expression with increases in the expression of apoptosis-inducing factor and histone acetyl transferase in leptin-treated rats. There was no change in the gene expression of caspase-3 (CASP-3). In conclusion, the adverse effects of leptin on sperm can be prevented by concurrent melatonin administration.
  5. Md Mokhtar AH, Malik IA, Abd Aziz NAA, Almabhouh FA, Durairajanayagam D, Singh HJ
    Andrologia, 2019 Apr;51(3):e13196.
    PMID: 30456785 DOI: 10.1111/and.13196
    This study examined the effects of PI3K and AMPK signalling pathway inhibitors on leptin-induced adverse effects on rat spermatozoa. Sprague-Dawley rats, aged 14-16 weeks, were randomised into control, leptin-, leptin + dorsomorphin (AMPK inhibitor)-, and leptin+LY294002 (PI3K inhibitor)-treated groups with six rats per group. Leptin was given once daily for 14 days via the intraperitoneal (i.p.) route at a dose of 60 ug kg-1 body weight. Rats in the leptin and inhibitor-treated groups received concurrently either dorsomorphin (5 mg kg-1  day-1 ) or LY294002 (1.2 mg kg-1  day-1 ) i.p. for 14 days. Controls received 0.1 ml of normal saline. Upon completion, sperm count, sperm morphology, seminiferous tubular epithelial height (STEH), seminiferous tubular diameter (STD), 8-hydroxy-2-deoxyguanosine (8-OHdG) and phospho-Akt/total Akt ratio were estimated. Data were analysed using ANOVA. Sperm count, STEH and STD were significantly lower, while the percentage of spermatozoa with abnormal morphology and the level of 8-OHdG were significantly higher in rats treated with leptin and leptin + dorsomorphin when compared to those in controls and LY294002-treated rats. Testicular phospho-Akt/total Akt ratio was significantly higher in leptin and leptin + LY294002-treated rats. In conclusion, LY294002 prevents leptin-induced changes in rat sperm parameters, suggesting the potential role of the PI3K signalling pathway in the adverse effects of leptin on sperm parameters.
  6. Almabhouh FA, Md Mokhtar AH, Malik IA, Aziz NAAA, Durairajanayagam D, Singh HJ
    Andrologia, 2020 Feb;52(1):e13433.
    PMID: 31773771 DOI: 10.1111/and.13433
    Infertility is somewhat more prevalent in men who are obese. They are also reported to have low sperm concentration, higher fraction of spermatozoa that look morphologically abnormal, higher DNA fragmentation index and evidence of oxidative stress. The precise cause for this remains uncertain. Leptin levels in serum and percentage body fat correlate positively, and obese men therefore usually have elevated serum leptin levels. Although leptin is important for normal reproductive function, but when present in excess, leptin could seriously affect reproductive function in men. Reports on the findings of sperm parameters in obese men, particularly those who are subfertile or infertile, seem to be similar to those reported from studies on normal-weight rats treated with leptin. Collectively, the observations reported in human and experimental animal studies point to leptin as a possible link between infertility and obesity. Herein, we review some findings on sperm function in obese subfertile or infertile men and those from animal studies following leptin treatment, and discuss the possible link between leptin and reproductive dysfunction in obese men. The large amounts of leptin secreted by the adipose tissue and its higher circulating levels could indeed be responsible for the higher prevalence of infertility in obese men.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links