Displaying all 3 publications

Abstract:
Sort:
  1. Al-Betar MA, Alomari OA, Abu-Romman SM
    Genomics, 2019 Oct 29.
    PMID: 31676302 DOI: 10.1016/j.ygeno.2019.09.015
    Gene expression data are expected to make a great contribution in the producing of efficient cancer diagnosis and prognosis. Gene expression data are coded by large measured genes, and only of a few number of them carry precious information for different classes of samples. Recently, several researchers proposed gene selection methods based on metaheuristic algorithms for analysing and interpreting gene expression data. However, due to large number of selected genes with limited number of patient's samples and complex interaction between genes, many gene selection methods experienced challenges in order to approach the most relevant and reliable genes. Hence, in this paper, a hybrid filter/wrapper, called rMRMR-MBA is proposed for gene selection problem. In this method, robust Minimum Redundancy Maximum Relevancy (rMRMR) as filter to select the most promising genes and an modified bat algorithm (MBA) as search engine in wrapper approach is proposed to identify a small set of informative genes. The performance of the proposed method has been evaluated using ten gene expression datasets. For performance evaluation, MBA is evaluated by studying the convergence behaviour of MBA with and without TRIZ optimisation operators. For comparative evaluation, the results of the proposed rMRMR-MBA were compared against ten state-of-arts methods using the same datasets. The comparative study demonstrates that the proposed method produced better results in terms of classification accuracy and number of selected genes in two out of ten datasets and competitive results on the remaining datasets. In a nutshell, the proposed method is able to produce very promising results with high classification accuracy which can be considered a promising contribution for gene selection domain.
  2. Abdi Alkareem Alyasseri Z, Alomari OA, Al-Betar MA, Awadallah MA, Hameed Abdulkareem K, Abed Mohammed M, et al.
    Comput Intell Neurosci, 2022;2022:5974634.
    PMID: 35069721 DOI: 10.1155/2022/5974634
    Recently, the electroencephalogram (EEG) signal presents an excellent potential for a new person identification technique. Several studies defined the EEG with unique features, universality, and natural robustness to be used as a new track to prevent spoofing attacks. The EEG signals are a visual recording of the brain's electrical activities, measured by placing electrodes (channels) in various scalp positions. However, traditional EEG-based systems lead to high complexity with many channels, and some channels have critical information for the identification system while others do not. Several studies have proposed a single objective to address the EEG channel for person identification. Unfortunately, these studies only focused on increasing the accuracy rate without balancing the accuracy and the total number of selected EEG channels. The novelty of this paper is to propose a multiobjective binary version of the cuckoo search algorithm (MOBCS-KNN) to find optimal EEG channel selections for person identification. The proposed method (MOBCS-KNN) used a weighted sum technique to implement a multiobjective approach. In addition, a KNN classifier for EEG-based biometric person identification is used. It is worth mentioning that this is the initial investigation of using a multiobjective technique with EEG channel selection problem. A standard EEG motor imagery dataset is used to evaluate the performance of the MOBCS-KNN. The experiments show that the MOBCS-KNN obtained accuracy of 93.86% using only 24 sensors with AR20 autoregressive coefficients. Another critical point is that the MOBCS-KNN finds channels not too close to each other to capture relevant information from all over the head. In conclusion, the MOBCS-KNN algorithm achieves the best results compared with metaheuristic algorithms. Finally, the recommended approach can draw future directions to be applied to different research areas.
  3. Alyasseri ZAA, Al-Betar MA, Doush IA, Awadallah MA, Abasi AK, Makhadmeh SN, et al.
    Expert Syst, 2021 Jul 28.
    PMID: 34511689 DOI: 10.1111/exsy.12759
    COVID-19 is the disease evoked by a new breed of coronavirus called the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recently, COVID-19 has become a pandemic by infecting more than 152 million people in over 216 countries and territories. The exponential increase in the number of infections has rendered traditional diagnosis techniques inefficient. Therefore, many researchers have developed several intelligent techniques, such as deep learning (DL) and machine learning (ML), which can assist the healthcare sector in providing quick and precise COVID-19 diagnosis. Therefore, this paper provides a comprehensive review of the most recent DL and ML techniques for COVID-19 diagnosis. The studies are published from December 2019 until April 2021. In general, this paper includes more than 200 studies that have been carefully selected from several publishers, such as IEEE, Springer and Elsevier. We classify the research tracks into two categories: DL and ML and present COVID-19 public datasets established and extracted from different countries. The measures used to evaluate diagnosis methods are comparatively analysed and proper discussion is provided. In conclusion, for COVID-19 diagnosing and outbreak prediction, SVM is the most widely used machine learning mechanism, and CNN is the most widely used deep learning mechanism. Accuracy, sensitivity, and specificity are the most widely used measurements in previous studies. Finally, this review paper will guide the research community on the upcoming development of machine learning for COVID-19 and inspire their works for future development. This review paper will guide the research community on the upcoming development of ML and DL for COVID-19 and inspire their works for future development.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links