Displaying all 2 publications

Abstract:
Sort:
  1. Ali Y, Alqudah A, Ahmad S, Abd Hamid S, Farooq U
    Des Monomers Polym, 2019;22(1):91-97.
    PMID: 31007637 DOI: 10.1080/15685551.2019.1591681
    Targeted drug delivery system improves the efficiency and safety of the therapeutic agents by managing the pharmacokinetics and pharmacodynamics of drugs. Currently, numerous drug carrier systems have been developed with different sizes, architectures and characteristics surface properties. Among different systems, macromolecules have a wide range of applications in targeted drug delivery system. The optimal drug loading potential, smooth drug releasing ability and biocompatibility are the distinguishing features that ensure the drugs delivery ability of macromolecules. This review briefly introduces some of the most commonly studied macromolecules which have been recommended as drugs delivery vehicles.
  2. Aljabali AAA, Alzoubi L, Hamzat Y, Alqudah A, Obeid MA, Al Zoubi MS, et al.
    Comb Chem High Throughput Screen, 2021;24(10):1557-1571.
    PMID: 32928083 DOI: 10.2174/1386207323666200914110012
    BACKGROUND: Virus nanoparticles have been extensively studied over the past decades for theranostics applications. Viruses are well-characterized, naturally occurring nanoparticles that can be produced in high quantity with a high degree of similarity in both structure and composition.

    OBJECTIVES: The plant virus Cowpea Mosaic Virus (CPMV) has been innovatively used as a nanoscaffold. Utilization of the internal cavity of empty Virus-Like Particles (VLPs) for the inclusion of therapeutics within the capsid has opened many opportunities in drug delivery and imaging applications.

    METHODS: The encapsidation of magnetic materials and anticancer drugs was achieved. SuperscriptCPMV denotes molecules attached to the external surface of CPMV and CPMVSubscript denotes molecules within the interior of the capsid.

    RESULTS: Here, the generation of novel VLPs incorporating iron-platinum nanoparticles TCPMVFePt and cisplatin (Cis) (TCPMVCis) is reported. TCPMVCis exhibited a cytotoxic IC50 of TCPMVCis on both A549 and MDA-MB-231 cell lines of 1.8 μM and 3.9 μM, respectively after 72 hours of incubation. The TCPMVFePt were prepared as potential MRI contrast agents.

    CONCLUSION: Cisplatin loaded VLP (TCPMVCis) is shown to enhance cisplatin cytotoxicity in cancer cell lines with its potency increased by 2.3-folds.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links