Displaying all 2 publications

Abstract:
Sort:
  1. Shanmuganathan R, Sharma A, Alshehri MA, Kamarudin SK, Arivalagan P
    Environ Res, 2024 Oct 01;258:119482.
    PMID: 38914252 DOI: 10.1016/j.envres.2024.119482
    In this study, we studied the hydrocracking of waste chicken oil (WCO) catalyzed by mesoporous SO42-/KIT-6. The study included WCO extraction, SO42-/KIT-6 catalyst synthesis, hydrocracking, and catalytic characterization. XRD patterns revealed intense peaks in the low-angle region, with shoulder peaks showing an increase in sulphate loading from 10% to 30%. The BET-specific surface area for the pure KIT-6 supports measured at 1003 m2/g, indicative of a well-defined mesoporous structure. Thermogravimetric analysis (TGA) showed a two-stage weight loss, attributed to the elimination of hydrated water (about 200 °C) and decomposition of sulphate ions (400-450 °C). SEM analysis highlighted the surface morphology of the active SK-2 catalyst. Hydrocatalytic and catalytic cracking reactions were performed, and about 99.8% conversion was achieved with 20 mL/H H2 flow, whereas higher production of bioliquids was observed at a flow of 15 mL/h. The hydrocracking mechanism was also studied to understand the formation of lower hydrocarbons. GC analyses of simulated distilled gasoline, kerosene, and diesel showed diverse hydrocarbon compositions. For engine testing, non-hydrocracked fuel rose to 28 kW at 3000 rpm and declined to 21 kW at 3500 rpm. Emission analysis revealed decreasing trends in NOX emissions of hydrogen-rich blends, with values of 65 ppm, 54 ppm, and 48 ppm for petrol, NHBL, and HBL, respectively. Similarly, SO2 emissions reduced from petrol to NHBL and HBL at 910 ppm, 800 ppm, and 600 ppm, respectively, suggesting reduced environmental impact. CO emissions exhibited a substantial reduction in NHBL (0.90%) and HBL (0.54%) compared to petrol (2.70%), emphasizing the cleaner combustion characteristics. Our results provide a comprehensive exploration of waste chicken oil hydrocracking, emphasizing catalyst synthesis, fuel characterization, engine performance, and environmental impact, thereby contributing valuable insights to the field of sustainable bioenergy.
  2. Alotaibi S, Alotaibi MM, Alghamdi FS, Alshehri MA, Bamusa KM, Almalki ZF, et al.
    PeerJ, 2025;13:e18795.
    PMID: 39834791 DOI: 10.7717/peerj.18795
    BACKGROUND: Functional magnetic resonance imaging (fMRI) has revolutionized our understanding of brain activity by non-invasively detecting changes in blood oxygen levels. This review explores how fMRI is used to study mind-reading processes in adults.

    METHODOLOGY: A systematic search was conducted across Web of Science, PubMed, and Google Scholar. Studies were selected based on strict inclusion and exclusion criteria: peer-reviewed; published between 2000 and 2024 (in English); focused on adults; investigated mind-reading (mental state decoding, brain-computer interfaces) or related processes; and employed various mind-reading techniques (pattern classification, multivariate analysis, decoding algorithms).

    RESULTS: This review highlights the critical role of fMRI in uncovering the neural mechanisms of mind-reading. Key brain regions involved include the superior temporal sulcus (STS), medial prefrontal cortex (mPFC), and temporoparietal junction (TPJ), all crucial for mentalizing (understanding others' mental states).

    CONCLUSIONS: This review emphasizes the importance of fMRI in advancing our knowledge of how the brain interprets and processes mental states. It offers valuable insights into the current state of mind-reading research in adults and paves the way for future exploration in this field.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links