Displaying all 3 publications

Abstract:
Sort:
  1. Alwakid G, Gouda W, Humayun M, Jhanjhi NZ
    Digit Health, 2023;9:20552076231203676.
    PMID: 37766903 DOI: 10.1177/20552076231203676
    Prolonged hyperglycemia can cause diabetic retinopathy (DR), which is a major contributor to blindness. Numerous incidences of DR may be avoided if it were identified and addressed promptly. Throughout recent years, many deep learning (DL)-based algorithms have been proposed to facilitate psychometric testing. Utilizing DL model that encompassed four scenarios, DR and its stages were identified in this study using retinal scans from the "Asia Pacific Tele-Ophthalmology Society (APTOS) 2019 Blindness Detection" dataset. Adopting a DL model then led to the use of augmentation strategies that produced a comprehensive dataset with consistent hyper parameters across all test cases. As a further step in the classification process, we used a Convolutional Neural Network model. Different enhancement methods have been used to raise visual quality. The proposed approach detected the DR with a highest experimental result of 97.83%, a top-2 accuracy of 99.31%, and a top-3 accuracy of 99.88% across all the 5 severity stages of the APTOS 2019 evaluation employing CLAHE and ESRGAN techniques for image enhancement. In addition, we employed APTOS 2019 to develop a set of evaluation metrics (precision, recall, and F1-score) to use in analyzing the efficacy of the suggested model. The proposed approach was also proven to be more efficient at DR location than both state-of-the-art technology and conventional DL.
  2. Alwakid G, Gouda W, Humayun M, Jhanjhi NZ
    Diagnostics (Basel), 2023 May 22;13(10).
    PMID: 37238299 DOI: 10.3390/diagnostics13101815
    When it comes to skin tumors and cancers, melanoma ranks among the most prevalent and deadly. With the advancement of deep learning and computer vision, it is now possible to quickly and accurately determine whether or not a patient has malignancy. This is significant since a prompt identification greatly decreases the likelihood of a fatal outcome. Artificial intelligence has the potential to improve healthcare in many ways, including melanoma diagnosis. In a nutshell, this research employed an Inception-V3 and InceptionResnet-V2 strategy for melanoma recognition. The feature extraction layers that were previously frozen were fine-tuned after the newly added top layers were trained. This study used data from the HAM10000 dataset, which included an unrepresentative sample of seven different forms of skin cancer. To fix the discrepancy, we utilized data augmentation. The proposed models outperformed the results of the previous investigation with an effectiveness of 0.89 for Inception-V3 and 0.91 for InceptionResnet-V2.
  3. Alwakid G, Gouda W, Humayun M, Jhanjhi NZ
    Digit Health, 2023;9:20552076231194942.
    PMID: 37588156 DOI: 10.1177/20552076231194942
    OBJECTIVE: Diabetic retinopathy (DR) can sometimes be treated and prevented from causing irreversible vision loss if caught and treated properly. In this work, a deep learning (DL) model is employed to accurately identify all five stages of DR.

    METHODS: The suggested methodology presents two examples, one with and one without picture augmentation. A balanced dataset meeting the same criteria in both cases is then generated using augmentative methods. The DenseNet-121-rendered model on the Asia Pacific Tele-Ophthalmology Society (APTOS) and dataset for diabetic retinopathy (DDR) datasets performed exceptionally well when compared to other methods for identifying the five stages of DR.

    RESULTS: Our propose model achieved the highest test accuracy of 98.36%, top-2 accuracy of 100%, and top-3 accuracy of 100% for the APTOS dataset, and the highest test accuracy of 79.67%, top-2 accuracy of 92.%76, and top-3 accuracy of 98.94% for the DDR dataset. Additional criteria (precision, recall, and F1-score) for gauging the efficacy of the proposed model were established with the help of APTOS and DDR.

    CONCLUSIONS: It was discovered that feeding a model with higher-quality photographs increased its efficiency and ability for learning, as opposed to both state-of-the-art technology and the other, non-enhanced model.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links