Displaying all 7 publications

Abstract:
Sort:
  1. Armon S, Hofman P, Ilié M
    Cells, 2021 07 29;10(8).
    PMID: 34440689 DOI: 10.3390/cells10081920
    Lung cancers are ranked third among the cancer incidence in France in the year 2020, with adenocarcinomas being the commonest sub-type out of ~85% of non-small cell lung carcinomas. The constant evolution of molecular genotyping, which is used for the management of lung adenocarcinomas, has led to the current focus on tumor suppressor genes, specifically the loss of function mutation in the SMARCA4 gene. SMARCA4-deficient adenocarcinomas are preponderant in younger aged male smokers with a predominant solid morphology. The importance of identifying SMARCA4-deficient adenocarcinomas has gained interest for lung cancer management due to its aggressive behavior at diagnosis with vascular invasion and metastasis to the pleura seen upon presentation in most cases. These patients have poor clinical outcome with short overall survival rates, regardless of the stage of disease. The detection of SMARCA4 deficiency is possible in most pathology labs with the advent of sensitive and specific immunohistochemical antibodies. The gene mutations can be detected together with other established lung cancer molecular markers based on the current next generation sequencing panels. Sequencing will also allow the identification of associated gene mutations, notably KRAS, KEAP1, and STK11, which have an impact on the overall survival and progression-free survival of the patients. Predictive data on the treatment with anti-PD-L1 are currently uncertain in this high tumor mutational burden cancer, which warrants more groundwork. Identification of target drugs is also still in pre-clinical testing. Thus, it is paramount to identify the SMARCA4-deficient adenocarcinoma, as it carries worse repercussions on patient survival, despite having an exceptionally low prevalence. Herein, we discuss the pathophysiology of SMARCA4, the clinicopathological consequences, and different detection methods, highlighting the perspectives and challenges in the assessment of SMARCA4 deficiency for the management of non-small cell lung cancer patients. This is imperative, as the contemporary shift on identifying biomarkers associated with tumor suppressor genes such as SMARCA4 are trending; hence, awareness of pathologists and clinicians is needed for the SMARCA4-dNSCLC entity with close follow-up on new management strategies to overcome the poor possibilities of survival in such patients.
  2. Awi NJ, Armon S, Peh KB, Peh SC, Teow SY
    Malays J Pathol, 2020 Apr;42(1):85-90.
    PMID: 32342935
    INTRODUCTION: Autophagy is a mechanism that degrades large damaged organelles and misfolded proteins to maintain the homeostasis in all cells. It plays double-faceted roles in tumourigenesis and prevention of various cancers. In our side observation of investigating the prognostic value of autophagy in colorectal cancer (CRC), we found high expression of autophagy proteins (LC3A, LC3B, and p62/SQSTM1) in the colonic ganglion cells. To our best understanding, this is the first paper reporting such finding.

    MATERIALS AND METHODS: Formalin-fixed paraffin-embedded (FFPE) CRC tissues blocks were retrieved and confirmed by haematoxylin & eosin (H&E) staining. Immunohistochemistry (IHC) targeting autophagy proteins (LC3A, LC3B, and p62/SQSTM1) was then performed followed by pathological examination.

    RESULTS: All three autophagy proteins were present in both normal and tumour tissues of CRC patients. Interestingly, high expression of autophagy proteins in colonic ganglion cells was consistently seen regardless of tissue type (normal or cancer) or tumour site (caecum, ascending, transverse, descending, sigmoid colon and rectum).

    CONCLUSIONS: This work highlights the high autophagic activities in human colonic ganglion cells.

  3. Wong MM, Chan HY, Aziz NA, Ramasamy TS, Bong JJ, Ch'ng ES, et al.
    Mol Biol Rep, 2021 Apr;48(4):3695-3717.
    PMID: 33893928 DOI: 10.1007/s11033-021-06334-9
    Liver cancer is the sixth most common cancer and the fourth leading cause of cancer deaths in the world. The most common type of liver cancers is hepatocellular carcinoma (HCC). Autophagy is the cellular digestion of harmful components by sequestering the waste products into autophagosomes followed by lysosomal degradation for the maintenance of cellular homeostasis. The impairment of autophagy is highly associated with the development and progression of HCC although autophagy may be involved in tumour-suppressing cellular events. In regards to its protecting role, autophagy also shelters the cells from anoikis- a programmed cell death in anchorage-dependent cells detached from the surrounding extracellular matrix which facilitates metastasis in HCC. Liver cancer stem cells (LCSCs) have the ability for self-renewal and differentiation and are associated with the development and progression of HCC by regulating stemness, resistance and angiogenesis. Interestingly, autophagy is also known to regulate normal stem cells by promoting cellular survival and differentiation and maintaining cellular homeostasis. In this review, we discuss the basal autophagic mechanisms and double-faceted roles of autophagy as both tumour suppressor and tumour promoter in HCC, as well as its association with and contribution to self-renewal and differentiation of LCSCs.
  4. Awi NJ, Yap HY, Armon S, Low JSH, Peh KB, Peh SC, et al.
    Malays J Pathol, 2021 Aug;43(2):269-279.
    PMID: 34448791
    Autophagy is a host defensive mechanism responsible for eliminating harmful cellular components through lysosomal degradation. Autophagy has been known to either promote or suppress various cancers including colorectal cancer (CRC). KRAS mutation serves as an important predictive marker for epidermal growth factor receptor (EGFR)-targeted therapies in CRC. However, the relationship between autophagy and KRAS mutation in CRC is not well-studied. In this single-centre study, 92 formalin-fixed paraffin-embedded (FFPE) tissues of CRC patients (42 Malaysian Chinese and 50 Indonesian) were collected and KRAS mutational status was determined by quantitative PCR (qPCR) (n=92) while the expression of autophagy effector (p62, LC3A and LC3B) was examined by immunohistochemistry (IHC) (n=48). The outcomes of each were then associated with the clinicopathological variables (n=48). Our findings demonstrated that the female CRC patients have a higher tendency in developing KRAS mutation in the Malaysian Chinese population (p<0.05). Expression of autophagy effector LC3A was highly associated with the tumour grade in CRC (p<0.001) but not with other clinicopathological parameters. Lastly, the survival analysis did not yield a statistically significant outcome. Overall, this small cohort study concluded that KRAS mutation and autophagy effectors are not good prognostic markers for CRC patients.
  5. Pang SW, Armon S, Chook JB, Chew J, Peh KB, Lim WW, et al.
    Mol Biol Rep, 2024 Jan 16;51(1):124.
    PMID: 38227097 DOI: 10.1007/s11033-023-09150-5
    BACKGROUND: Colorectal cancer (CRC) is a global health problem. The gut microbiome is now recognized as an important underlying factor to the initiation and progression of CRC. Fusobacterium nucleatum (FN) is one of the most studied bacteria in the aetiology of CRC. This study provided cohort evidence on the association of FN infection with clinicopathologic features in CRC patients.

    METHODS: We analysed the cancerous and adjacent non-cancerous formalin-fixed paraffin embedded (FFPE) tissue of 83 CRC patients from a single medical centre in Malaysia. TaqMan probe-based qPCR targeting the 16S rRNA gene was used to detect the presence of FN in the extracted FFPE DNA. The differences in FN expression between cancer and non-cancer tissues were evaluated. Association studies between FN infection in the tumour and relative FN abundance with available clinical data were conducted.

    RESULTS: FN was more abundant in the cancerous tissue compared to non-cancerous tissue (p = 0.0025). FN infection in the tumour was significantly associated with lymph node metastasis (p = 0.047) and cancer staging (p = 0.032), but not with other clinicopathologic variables. In double-positive patients where FN was detected in both cancerous and non-cancerous tissue, the expression fold-change of FN, calculated using 2-ΔΔCT formula, was significantly higher in patients with tumour size equal to or greater than 5 cm (p = 0.033) and in KRAS-mutated patients (p = 0.046).

    CONCLUSIONS: FN is enriched in CRC tumour tissue and is associated with tumour size, lymph node metastasis, cancer staging, and KRAS mutation in this single-centre small cohort study.

  6. Wong MM, Aziz NA, Ch'ng ES, Armon S, Chook JB, Bong JJ, et al.
    J Mol Histol, 2024 Apr 17.
    PMID: 38630414 DOI: 10.1007/s10735-024-10191-8
    BACKGROUND: Autophagy plays multifaceted roles in regulating hepatocellular carcinoma (HCC) and the mechanisms involved are under-explored. Regulatory microRNAs (miRNAs) have been reported to target autophagy proteins but their roles in HCC is not well studied. Using HCC patient tissues, this study aims to investigate the association of autophagy with several clinicopathological parameters as well as identifying the autophagy-related miRNAs and the possible pathways.

    METHODS AND RESULTS: Autophagy level in the HCC patient-derived cancer and non-cancer tissues was determined by immunohistochemistry (IHC) targeting SQSTM1, LC3A and LC3B proteins. Significance tests of clinicopathological variables were tested using the Fisher's exact or Chi-square tests. Gene and miRNA expression assays were carried out and analyzed using Nanostring platform and software followed by validation of other online bioinformatics tools, namely String and miRabel. Autophagy expression was significantly higher in cancerous tissues compared to adjacent non-cancer tissues. High LC3B expression was associated with advanced tumor histology grade and tumor location. Nanostring gene expression analysis revealed that SQSTM1, PARP1 and ATG9A genes were upregulated in HCC tissues compared to non-cancer tissues while SIRT1 gene was downregulated. These genes are closely related to an autophagy pathway in HCC. Further, using miRabel tool, three downregulated miRNAs (hsa-miR-16b-5p, hsa-miR-34a-5p, and hsa-miR-660-5p) and one upregulated miRNA (hsa-miR-539-5p) were found to closely interact with the abovementioned autophagy-related genes. We then mapped out the possible pathway involving the genes and miRNAs in HCC tissues.

    CONCLUSIONS: We conclude that autophagy events are more active in HCC tissues compared to the adjacent non-cancer tissues. We also reported the possible role of several miRNAs in regulating autophagy-related genes in the autophagy pathway in HCC. This may contribute to the development of potential therapeutic targets for improving HCC therapy. Future investigations are warranted to validate the target genes reported in this study using a larger sample size and more targeted molecular technique.

  7. Medina PB, Armon S, Bin Abdul Aziz MF, Cheong IH, de Leon MP, Drobysz S, et al.
    Biopreserv Biobank, 2024 Sep 09.
    PMID: 39248001 DOI: 10.1089/bio.2024.0044
    Southeast Asian countries are at the forefront of public health pressures due to a confluence of factors such as population growth, urbanization, environmental pollution, and infectious diseases (re)emergence. Therefore, the ability to be able to conduct research addressing local and regional needs is of paramount importance. As such, biobanking activities, the standardized collection of biological samples, and associated data, developed over the past few decades supporting ongoing biomedical and clinical research, as well as surveillance are of critical importance. However, the regulatory landscape of biobanking is not widely understood and reported, which this narrative review aims to address for the ASEAN member states. It is evident that there are specific regulatory arrangements within each ASEAN member state, which though may be sufficient for the current level of operations, are unlikely to support a regional sharing of biological samples, data, and eventually benefits from the conducted research. Additionally, legacy and often-overlapping regulatory frameworks exist, which raise the need of an eventual consolidation under a single framework. Thus, this field requires further study as well as the creation of viable, practical proposals that would allow for biobanking harmonization and thus the exchange of biological samples and data to be achieved regionally, if not further afield.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links