Displaying all 2 publications

Abstract:
Sort:
  1. Mat Yassim AS, Asras MFF, Gazali AM, Marcial-Coba MS, Zainulabid UA, Ahmad HF
    Mater Today Proc, 2022;48:828-836.
    PMID: 33680867 DOI: 10.1016/j.matpr.2021.02.387
    SARS-CoV-2 is a very transmissible and pathogenic coronavirus which detected in Malaysia in January 2020. Nevertheless, the sample from Malaysia is still under-sequenced. Hence lacking clarity of the circulating strain in Malaysia leads to a deadlock in understanding the virus infectivity. This study aimed to investigate the genome identity of circulating COVID-19 strains in Pahang and understand disease epidemiology during the pandemic. This study leveraged high-throughput sequencing analysis for the whole genome sequencing and implemented bioinformatic technique for the analysis. Here we reported that the virus with D614G mutation in Spike protein circulates in a few Malaysia states before the Sivagangga cluster announced in Kedah in July 2020. This mutated virus includes our virus sample isolated in April 2020 from an asymptomatic patient in Pahang. Based on the phylogenetic analysis, we discovered the origin of our sample Pahang/IIUM91 was not related to Sivagangga cluster. Here, we have generated 3D structure model of Pahang/IIUM91 Spike protein. D614G mutation in Pahang/IIUM91 Spike protein increases viral stability and flexibility, hence render higher infectivity. Collectively, our results suggest for the establishment of a complete SARS-CoV-2 genome database in Malaysia. Hence, more research should be established to learn the behaviour of this virus.
  2. Siew SW, Khairi MHF, Hamid NA, Asras MFF, Ahmad HF
    Environ Pollut, 2025 Jan 01;364(Pt 1):125330.
    PMID: 39551377 DOI: 10.1016/j.envpol.2024.125330
    The burgeoning crises of antimicrobial resistance and plastic pollution are converging in healthcare settings, presenting a complex challenge to global health. This study investigates the microbial populations in healthcare waste to understand the extent of antimicrobial resistance and the potential for plastic degradation by bacteria. Our metagenomic analysis, using both amplicon and shallow shotgun sequencing, provided a comprehensive view of the taxonomic diversity and functional capacity of the microbial consortia. The viable bacteria in healthcare waste samples were analyzed employing full-length 16S rRNA sequencing, revealing a diverse bacterial community dominated by Firmicutes and Proteobacteria phyla. Notably, Proteus mirabilis VFC3/3 and Pseudomonas sp. VFA2/3 were detected, while Stenotrophomonas maltophilia VFV3/2 surfaced as the predominant species, holding implications for the spread of hospital-acquired infections and antimicrobial resistance. Antibiotic susceptibility testing identified multidrug-resistant strains conferring antimicrobial genes, including the broad-spectrum antibiotic carbapenem, underscoring the critical need for improved waste management and infection control measures. Remarkably, we found genes linked to the breakdown of plastic that encoded for enzymes of the esterase, depolymerase, and oxidoreductase classes. This suggests that specific bacteria found in medical waste may be able to reduce the amount of plastic pollution that comes from biological and medical waste. The information is helpful in formulating strategies to counter the combined problems of environmental pollution and antibiotic resistance. This study emphasises the importance of monitoring microbial communities in hospital waste in order to influence waste management procedures and public health policy. The findings highlight the need for a multidisciplinary approach to mitigate the risks associated with antimicrobial resistance and plastic waste, especially in hospital settings where they intersect most acutely.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links