Displaying all 5 publications

Abstract:
Sort:
  1. Selvaraj M, Assiri MA, Singh H, Appaturi JN, Subrahmanyam C, Ha CS
    Dalton Trans, 2021 Jan 21.
    PMID: 33475664 DOI: 10.1039/d0dt04158k
    The Prins cyclization of styrene (SE) with paraformaldehyde (PFCHO) was conducted with mesoporous ZnAlMCM-41 catalysts for the synthesis of 4-phenyl-1,3-dioxane (4-PDO) using a liquid phase heterogeneous catalytic method. For a comparison study, the Prins cyclization reaction was also conducted over different nanoporous catalysts, e.g. mesoporous solid acid catalysts, AlMCM-41(21) and ZnMCM-41(21), and microporous catalysts, USY, Hβ, HZSM-5, and H-mordenite. The recyclable mesoporous ZnAlMCM-41 catalysts were reused in this reaction to evaluate their catalytic stabilities. Since ZnAlMCM-41(75) has higher catalytic activity than other solid acid catalysts, washed ZnAlMCM-41(75)/W-ZnAlMCM-41(75) was prepared using an efficient chemical treatment method and used with various reaction parameters to find an optimal parameter for the highly selective synthesis of 4-PDO. W-ZnAlMCM-41(75) was also used in the Prins cyclization of olefins with PFCHO and formalin (FN, 37% aqueous solution of formaldehyde (FCHO)) under different reaction conditions to obtain 1,3-dioxanes, which are widely used as solvents or intermediates in organic synthesis. Based on the nature of catalysts used under different reaction conditions, a reasonable plausible reaction mechanism for the Prins cyclization of SE with PFCHO is proposed. Notably, it can be seen from the catalytic results of all catalysts that the W-ZnAlMCM-41(75) catalyst has higher 4-PDO selectivity with exceptional catalytic activity than other microporous and mesoporous catalysts.
  2. Selvaraj M, Assiri MA, Rokhum SL, Manjunatha C, Appaturi JN, Murugesan S, et al.
    Dalton Trans, 2021 Nov 02;50(42):15118-15128.
    PMID: 34612261 DOI: 10.1039/d1dt01760h
    A sustainable method was used to produce aromatic ketones by the solvent-free benzylic oxidation of aromatics over mesoporous Cu(II)-containing propylsalicylaldimine anchored on the surface of Santa Barbara Amorphous type material-15 (CPSA-SBA-15) catalysts. For comparison, mesoporous Cu(II)-containing propylsalicylaldimine anchored with Mobil Composition of Matter-41 (CPSA-MCM-41) was assessed for these reactions under similar reaction conditions. The washed CPSA-SBA-15(0.2) (W-CPSA-SBA-15(0.2)) catalyst was prepared using an easy chemical method for the complete removal of non-framework CuO nanoparticle species on the surface of pristine CPSA-SBA-15(0.2) (p-CPSA-SBA-15(0.2) prepared with 0.2 wt% of Cu, and its catalytic activity was evaluated with different reaction parameters, oxidants and solvents. In order to confirm the catalytic stability, the recyclability was assessed, and the performance of hot-filtration experiments was also evaluated. All the catalysts used for these catalytic reactions were characterized using many instrumental techniques to pinpoint the mesoporous nature and active sites of the catalysts. The proposed reaction mechanism has been well documented on the basis of catalytic results obtained for solvent-free oxidation of aromatics. Based on the catalytic results, we found that W-CPSA-SBA-15(0.2) is a very ecofriendly catalyst with exceptional catalytic activity.
  3. Abunowara M, Bustam MA, Sufian S, Babar M, Eldemerdash U, Mukhtar A, et al.
    Environ Res, 2023 Feb 01;218:114905.
    PMID: 36442522 DOI: 10.1016/j.envres.2022.114905
    CO2 sequestration into coalbed seams is one of the practical routes for mitigating CO2 emissions. The adsorption mechanisms of CO2 onto Malaysian coals, however, are not yet investigated. In this research CO2 adsorption isotherms were first performed on dry and wet Mukah-Balingian coal samples at temperatures ranging from 300 to 348 K and pressures up to 6 MPa using volumetric technique. The dry S1 coal showed the highest CO2 adsorption capacity of 1.3 mmol g-1, at 300 K and 6 MPa among the other coal samples. The experimental results of CO2 adsorption were investigated using adsorption isotherms, thermodynamics, and kinetic models. Nonlinear analysis has been employed to investigate the data of CO2 adsorption onto coal samples via three parameter isotherm equilibrium models, namely Redlich Peterson, Koble Corrigan, Toth, Sips, and Hill, and four parameter equilibrium model, namely Jensen Seaton. The results of adsorption isotherm suggested that the Jensen Seaton model described the experimental data well. Gibb's free energy change values are negative, suggesting that CO2 adsorption onto the coal occurred randomly. Enthalpy change values in the negative range established that CO2 adsorption onto coal is an exothermic mechanism. Webber's pore-diffusion model, in particular, demonstrated that pore-diffusion was the main controlling stage in CO2 adsorption onto coal matrix. The activation energy of the coals was calculated to be below -13 kJ mol-1, indicating that adsorption of CO2 onto coals occurred through physisorption. The results demonstrate that CO2 adsorption onto coal matrix is favorable, spontaneous, and the adsorbed CO2 molecules accumulate more onto coal matrix. The observations of this investigation have significant implications for a more accurate measurement of CO2 injection into Malaysian coalbed seams.
  4. Adil HI, Thalji MR, Yasin SA, Saeed IA, Assiri MA, Chong KF, et al.
    RSC Adv, 2022 Jan 05;12(3):1433-1450.
    PMID: 35425211 DOI: 10.1039/d1ra07034g
    Environmental heavy metal ions (HMIs) accumulate in living organisms and cause various diseases. Metal-organic frameworks (MOFs) have proven to be promising and effective materials for removing heavy metal ions from contaminated water because of their high porosity, remarkable physical and chemical properties, and high specific surface area. MOFs are self-assembling metal ions or clusters with organic linkers. Metals are used as dowel pins to build two-dimensional or three-dimensional frameworks, and organic linkers serve as carriers. Modern research has mainly focused on designing MOFs-based materials with improved adsorption and separation properties. In this review, for the first time, an in-depth look at the use of MOFs nanofiber materials for HMIs removal applications is provided. This review will focus on the synthesis, properties, and recent advances and provide an understanding of the opportunities and challenges that will arise in the synthesis of future MOFs-nanofiber composites in this area. MOFs decorated on nanofibers possess rapid adsorption kinetics, a high adsorption capacity, excellent selectivity, and good reusability. In addition, the substantial adsorption capacities are mainly due to interactions between the target ions and functional binding groups on the MOFs-nanofiber composites and the highly ordered porous structure.
  5. Hussain I, Amara U, Bibi F, Hanan A, Lakhan MN, Soomro IA, et al.
    Adv Colloid Interface Sci, 2024 Jan 04;324:103077.
    PMID: 38219341 DOI: 10.1016/j.cis.2023.103077
    Ti-MXene allows a range of possibilities to tune their compositional stoichiometry due to their electronic and electrochemical properties. Other than conventionally explored Ti-MXene, there have been ample opportunities for the non-Ti-based MXenes, especially the emerging Mo-based MXenes. Mo-MXenes are established to be remarkable with optoelectronic and electrochemical properties, tuned energy, catalysis, and sensing applications. In this timely review, we systematically discuss the various organized synthesis procedures, associated experimental tunning parameters, physiochemical properties, structural evaluation, stability challenges, key findings, and a wide range of applications of emerging Mo-MXene over Ti-MXenes. We also critically examined the precise control of Mo-MXenes to cater to advanced applications by comprehensively evaluating the summary of recent studies using artificial intelligence and machine learning tools. The critical future perspectives, significant challenges, and possible outlooks for successfully developing and using Mo-MXenes for various practical applications are highlighted.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links