Displaying all 2 publications

Abstract:
Sort:
  1. Ni H, Aye SZ, Naing C
    Cochrane Database Syst Rev, 2022 May 26;5(5):CD013506.
    PMID: 35616126 DOI: 10.1002/14651858.CD013506.pub2
    BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a chronic and progressive disease, often punctuated by recurrent flare-ups or exacerbations. Magnesium sulfate, having a bronchodilatory effect, may have a potential role as an adjunct treatment in COPD exacerbations. However, comprehensive evidence of its effects is required to facilitate clinical decision-making.

    OBJECTIVES: To assess the effects of magnesium sulfate for acute exacerbations of chronic obstructive pulmonary disease in adults.

    SEARCH METHODS: We searched the Cochrane Airways Trials Register, CENTRAL, MEDLINE, Embase, ClinicalTrials.gov, the World Health Organization (WHO) trials portal, EU Clinical Trials Register and Iranian Registry of Clinical Trials. We also searched the proceedings of major respiratory conferences and reference lists of included studies up to 2 August 2021.

    SELECTION CRITERIA: We included single- or double-blind parallel-group randomised controlled trials (RCTs) assessing magnesium sulfate in adults with COPD exacerbations. We excluded cross-over trials.

    DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. Two review authors independently selected trials for inclusion, extracted data and assessed risk of bias. The primary outcomes were: hospital admissions (from the emergency room); need for non-invasive ventilation (NIV), assisted ventilation or admission to intensive-care unit (ICU); and serious adverse events. Secondary outcomes were: length of hospital stay, mortality, adverse events, dyspnoea score, lung function and blood gas measurements. We assessed confidence in the evidence using GRADE methodology. For missing data, we contacted the study investigators.

    MAIN RESULTS: We identified 11 RCTs (10 double-blind and 1 single-blind) with a total 762 participants. The mean age of participants ranged from 62 to 76 years. Trials were single- or two-centre trials conducted in Iran, New Zealand, Nepal, Turkey, the UK, Tunisia and the USA between 2004 and 2018. We judged studies to be at low or unclear risk of bias for most of the domains. Three studies were at high risk for blinding and other biases.  Intravenous magnesium sulfate versus placebo Seven studies (24 to 77 participants) were included. Fewer people may require hospital admission with magnesium infusion compared to placebo (odds ratio (OR) 0.45, 95% CI 0.23 to 0.88; number needed to treat for an additional beneficial outcome (NNTB) = 7; 3 studies, 170 participants; low-certainty evidence). Intravenous magnesium may result in little to no difference in the requirement for non-invasive ventilation (OR 0.74, 95% CI 0.31 to 1.75; very low-certainty evidence). There were no reported cases of endotracheal intubation (2 studies, 107 participants) or serious adverse events (1 study, 77 participants) in either group. Included studies did not report intensive care unit (ICU) admission or deaths. Magnesium infusion may reduce the length of hospital stay by a mean difference (MD) of 2.7 days (95% CI 4.73 days to 0.66 days; 2 studies, 54 participants; low-certainty evidence) and improve dyspnoea score by a standardised mean difference of -1.40 (95% CI -1.83 to -0.96; 2 studies, 101 participants; low-certainty evidence). We were uncertain about the effect of magnesium infusion on improving lung function or oxygen saturation. For all adverse events, the Peto OR was 0.14 (95% CI 0.02 to 1.00; 102 participants); however, the event rate was too low to reach a robust conclusion.  Nebulised magnesium sulfate versus placebo Three studies (20 to 172 participants) were included. Magnesium inhalation may have little to no impact on hospital admission (OR 0.77, 95% CI 0.21 to 2.82; very low-certainty evidence) or need for ventilatory support (NIV or mechanical ventilation) (OR 0.33, 95% CI 0.01 to 8.20; very low-certainty evidence). It may result in fewer ICU admissions compared to placebo (OR 0.39, 95% CI 0.15 to 1.00; very low-certainty evidence) and improvement in dyspnoea (MD -14.37, 95% CI -26.00 to -2.74; 1 study, 20 participants; very low-certainty evidence). There were no serious adverse events reported in either group. There was one reported death in the placebo arm in one trial, but the number of participants was too small for a conclusion. There was limited evidence about the effect of magnesium inhalation on length of hospital stay, lung function outcomes or oxygen saturation. Included studies did not report adverse events.  Magnesium sulfate versus ipratropium bromide  A single study with 124 participants assessed nebulised magnesium sulfate plus intravenous magnesium infusion versus nebulised ipratropium plus intravenous normal saline. There was little to no difference between these groups in terms of hospital admission (OR 1.62, 95% CI 0.78 to 3.37), endotracheal intubation (OR 1.69, 95% CI 0.61 to 4.71) and length of hospital stay (MD 1.10 days, 95% CI -0.22 to 2.42), all with very low-certainty evidence. There were no data available for non-invasive ventilation, ICU admission and serious adverse events. Adverse events were not reported.  AUTHORS' CONCLUSIONS: Intravenous magnesium sulfate may be associated with fewer hospital admissions, reduced length of hospital stay and improved dyspnoea scores compared to placebo. There is no evidence of a difference between magnesium infusion and placebo for NIV, lung function, oxygen saturation or adverse events. We found no evidence for ICU admission, endotracheal intubation, serious adverse events or mortality. For nebulised magnesium sulfate, we are unable to draw conclusions about its effects in COPD exacerbations for most of the outcomes. Studies reported possibly lower ICU admissions and a lesser degree of dyspnoea with magnesium inhalation compared to placebo; however, larger studies are required to yield a more precise estimate for these outcomes. Similarly, we could not identify any robust evidence for magnesium sulfate compared to ipratropium bromide. Future well-designed multicentre trials with larger samples are required, including subgroups according to severity of exacerbations and COPD phenotypes.

  2. Aye SZ, Ni H, Sein HH, Mon ST, Zheng Q, Wong YKY
    Cochrane Database Syst Rev, 2021 02 14;2:CD013457.
    PMID: 33583058 DOI: 10.1002/14651858.CD013457.pub2
    BACKGROUND: Symptoms of autism spectrum disorder (ASD) have been associated, in part, with the dysfunction of N-methyl-D-aspartate (NMDA) glutamate receptors at excitatory synapses and glutamate abnormalities. Medications related to glutamatergic neurotransmission, such as D-cycloserine - which is a partial agonist of the NMDA glutamate receptor - are potential treatment options for the core features of ASD. However, the potential effect of D-cycloserine on the social and communication skills deficits of individuals with ASD has not been thoroughly explored and no systematic reviews of the evidence have been conducted.

    OBJECTIVES: To assess the efficacy and adverse effects of D-cycloserine compared with placebo for social and communication skills in individuals with ASD.

    SEARCH METHODS: In November 2020, we searched CENTRAL, MEDLINE, Embase, six other databases and two trials registers. We also searched the reference lists of relevant publications and contacted the authors of the included study, Minshawi 2016, to identify any additional studies. In addition, we contacted pharmaceutical companies, searched manufacturers' websites and sources of reports of adverse events.  SELECTION CRITERIA: All randomised controlled trials (RCTs) of any duration and dose of D-cycloserine, with or without adjunct treatment, compared to placebo in individuals with ASD.

    DATA COLLECTION AND ANALYSIS: Two review authors independently selected studies for inclusion, extracted relevant data, assessed the risk of bias, graded the certainty of the evidence using the GRADE approach, and analysed and evaluated the data. We provide a narrative report of the findings as only one study is included in this review.

    MAIN RESULTS: We included a single RCT (Minshawi 2016) funded by the United States Department of Defense. It was conducted at two sites in the USA: Indiana University School of Medicine and Cincinnati Children's Hospital Medical Centre. In the included study, 67 children with ASD aged between 5 and 11 years were randomised to receive either 10 weeks (10 doses) of (50 mg) D-cycloserine plus social skills training, or placebo plus social skills training. Randomisation was carried out 1:1 between D-cycloserine and placebo arms, and outcome measures were recorded at one-week post-treatment. The 'risk of bias' assessment for the included study was low for five domains and unclear for two domains. The study (67 participants) reported low certainty evidence of little to no difference between the two groups for all outcomes measured at one week post-treatment: social interaction impairment (mean difference (MD) 3.61 (assessed with the Social Responsiveness Scale), 95% confidence interval (CI) -5.60 to 12.82); social communication impairment (MD -1.08 (measured using the inappropriate speech subscale of the Aberrant Behavior Checklist (ABC)), 95% CI -2.34 to 0.18); restricted, repetitive, stereotyped patterns of behaviour (MD 0.12 (measured by the ABC stereotypy subscale), 95% CI -1.71 to 1.95); serious adverse events (risk ratio (RR) 1.11, 95% CI 0.94 to 1.31); non-core symptoms of ASD (RR 0.97 (measured by the Clinical Global Impression-Improvement scale), 95% CI 0.49 to 1.93); and tolerability of D-cycloserine (RR 0.32 (assessed by the number of dropouts), 95% CI 0.01 to 7.68).  AUTHORS' CONCLUSIONS: We are unable to conclude with certainty whether D-cycloserine is effective for individuals with ASD. This review included low certainty data from only one study with methodological issues and imprecision. The added value of this review compared to the included study is we assessed the risk of bias and evaluated the certainty of evidence using the GRADE approach. Moreover, if we find new trials in future updates of this review, we could potentially pool the data, which may either strengthen or decrease the evidence for our findings.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links