Displaying all 4 publications

Abstract:
Sort:
  1. Ayoub R, Jarrar Q, Ali D, Moshawih S, Jarrar Y, Hakim M, et al.
    Eur J Pharm Sci, 2021 Aug 01;163:105865.
    PMID: 33979659 DOI: 10.1016/j.ejps.2021.105865
    BACKGROUND: Mefenamic acid (MFA), a commonly prescribed non-steroidal anti-inflammatory drug (NSAID), possesses a greater risk of dose-related central nervous system (CNS) toxicity than other NSAIDs. In this study, α-tocopherol and α-tocopherol acetate were selected as prodrug moieties for MFA in an attempt to reduce the CNS toxicity and enhance the therapeutic efficacy.

    METHOD: α-tocopherol monoester of MFA (TMMA) and α-tocopherol di-ester of MFA (TDMA) were synthesized by esterification reaction and were subjected to various in vivo characterizations.

    RESULTS: Masking of the carboxylate group of MFA with the proposed pro-moieties significantly (p<0.05) delayed the onset of tonic-clonic seizure in mice. Besides, the intraperitoneal administration of TMMA and TDMA in mice produced significantly (p<0.05) stronger anti-inflammatory effects in the carrageenan-induced paw edema test and greater anti-nociceptive effect in the acetic acid-induced writhing test than MFA at an equimolar dose of 20 mg/kg. Treatment with TMMA and TDMA caused a significant (p<0.05) inhibition of pain at 1st and 2nd phases of formalin-induced licking test in mice, whereas treatment with MFA inhibited the 2nd phase only. Pretreatment with naloxone and flumazenil significantly (p<0.05) reversed the anti-nociceptive effect of MFA, TMMA and TDMA in the acetic acid-induced writhing test. In addition, treatment with TMMA and TDMA caused significantly (p<0.05) a higher inhibition of pain in the glutamate-induced licking response in mice than MFA.

    CONCLUSION: Masking the carboxylate moiety of MFA by α-tocopherol and α-tocopherol acetate has a great potential for reducing CNS toxicity, enhancing the therapeutic efficacy and altering the mode of anti-nociceptive action.

  2. Sabbagh HAK, Hussein-Al-Ali SH, Hussein MZ, Abudayeh Z, Ayoub R, Abudoleh SM
    Polymers (Basel), 2020 Apr 01;12(4).
    PMID: 32244671 DOI: 10.3390/polym12040772
    The goal of this study was to develop and statistically optimize the metronidazole (MET), chitosan (CS) and alginate (Alg) nanoparticles (NP) nanocomposites (MET-CS-AlgNPs) using a (21 × 31 × 21) × 3 = 36 full factorial design (FFD) to investigate the effect of chitosan and alginate polymer concentrations and calcium chloride (CaCl2) concentration ondrug loading efficiency(LE), particle size and zeta potential. The concentration of CS, Alg and CaCl2 were taken as independent variables, while drug loading, particle size and zeta potential were taken as dependent variables. The study showed that the loading efficiency and particle size depend on the CS, Alg and CaCl2 concentrations, whereas zeta potential depends only on the Alg and CaCl2 concentrations. The MET-CS-AlgNPs nanocomposites were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM) and in vitro drug release studies. XRD datashowed that the crystalline properties of MET changed to an amorphous-like pattern when the nanocomposites were formed.The XRD pattern of MET-CS-AlgNPs showed reflections at 2θ = 14.2° and 22.1°, indicating that the formation of the nanocompositesprepared at the optimum conditions havea mean diameter of (165±20) nm, with a MET loading of (46.0 ± 2.1)% and a zeta potential of (-9.2 ± 0.5) mV.The FTIR data of MET-CS-AlgNPs showed some bands of MET, such as 3283, 1585 and 1413 cm-1, confirming the presence of the drug in the MET-CS-AlgNPs nanocomposites. The TGA for the optimized sample of MET-CS-AlgNPs showed a 70.2% weight loss compared to 55.3% for CS-AlgNPs, and the difference is due to the incorporation of MET in the CS-AlgNPs for the formation of MET-CS-AlgNPs nanocomposites. The release of MET from the nanocomposite showed sustained-release properties, indicating the presence of an interaction between MET and the polymer. The nanocomposite shows a smooth surface and spherical shape. The release profile of MET from its MET-CS-AlgNPs nanocomposites was found to be governed by the second kinetic model (R2 between 0.956-0.990) with more than 90% release during the first 50 h, which suggests that the release of the MET drug can be extended or prolonged via the nanocomposite formulation.
  3. Jarrar Q, Ayoub R, Alhussine K, Goh KW, Moshawih S, Ardianto C, et al.
    J Pers Med, 2022 Nov 17;12(11).
    PMID: 36422097 DOI: 10.3390/jpm12111921
    BACKGROUND: The elevated plus maze (EPM) and the marble burying (MB) tests are common behavioral tests used for behavioral phenotyping in mouse models for neurodevelopmental disorders. However, the behavioral effects of maternal separation (MS), a standard paradigm for early life stress in animals, in both the EPM and MB tests remain incompletely known.

    OBJECTIVES: This study aimed to investigate the behavioral effects of prolonged MS in the offspring of mice using the EPM and MB tests.

    METHODS: Male BALB/c mice were isolated from their mothers for 4 h each day during the first 30 days after birth. On day 50 postnatal, groups of separated and non-separated mice (n = 18/each group) were subjected to the EPM and MB tests for comparative behavioral evaluations. In addition, the locomotor activity of mice was evaluated using the actophotometer test.

    RESULTS: The findings of the EPM test revealed that separated mice exhibited anxiolytic-like behaviors, as evidenced by a significant increase in the latency to closed arms and the time spent in the open arms compared with non-separated mice. Separated mice also showed compulsive burying activity in the MB test, as determined by a significant increase in the number of buried marbles. The results of the actophotometer test did not show any significant change in locomotor activity.

    CONCLUSIONS: Prolonged MS caused the adult offspring of mice to exhibit a decrease in anxiety state and increased compulsive burying activity, which were not associated with a change in locomotor activity. Further investigations with validated tests are needed to support these findings.

  4. Jarrar Q, Ayoub R, Jarrar Y, Aburass H, Goh KW, Ardianto C, et al.
    J Integr Neurosci, 2023 Jul 26;22(4):104.
    PMID: 37519168 DOI: 10.31083/j.jin2204104
    BACKGROUND: Mefenamic acid (MFA), a common analgesic, causes central nervous system (CNS) toxicity at high doses with a proposed activity on the Gamma-aminobutyric acid (GABA) system. However, it remains unknown whether flumazenil (FMZ), a GABA type A receptor (GABAAR) antagonist, can reverse MFA toxicity.

    METHODS: The behavioral and neurophysiological effects of MFA were investigated in mice with and without FMZ pre-treatment. The elevated zero maze (EZM) and marble burying tests were used to assess anxiety-like behaviors and burying activities, respectively. The standard bar test was used to evaluate catalepsy, while the actophotometer test was used to measure locomotor activity. Seizure intensity was scored, and fatalities were counted.

    RESULTS: Without FMZ pre-treatment, MFA induced behavioral and neurophysiological effects in a dose-dependent manner as follows: At a dose of 20 mg/kg, i.p, MFA-treated mice exhibited anxiety-like behaviors, which was determined by a significant increase in the time spent in the closed areas and a significant decrease in the number of entries to the open areas of the EZM apparatus. These mice also showed a significant decrease in the burying activity, manifested as a significant decrease in the number of buried marbles. At 40 mg/kg, i.p., MFA-treated mice showed catalepsy that was associated with a significant decrease in locomotor activity. At a dose of 80 mg/kg, i.p., mice developed fatal tonic-clonic seizures (seizure score = 4). Pre-treatment with FMZ (5 mg/kg, i.p.) significantly reversed the anxiety-like behaviors and restored marble-burying activity. Additionally, FMZ prevented catalepsy, significantly restored locomotor activity, reduced seizure intensity (seizure score = 0.3) and significantly reduced mortalities.

    CONCLUSIONS: The present study's findings indicate that activation of the GABAAR is involved in the CNS toxicity of MFA, and FMZ reverses MFA toxicity by interfering with this receptor.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links