Displaying all 3 publications

Abstract:
Sort:
  1. Syuhada DN, Azura AR
    Polymers (Basel), 2021 Oct 19;13(20).
    PMID: 34685359 DOI: 10.3390/polym13203600
    In recent years, biodegradable composites have become important in various fields because of the increasing awareness of the global environment. Waste natural polymers have received much attention as renewable, biodegradable, non-toxic and low-cost filler in polymer composites. In order to exploit the high potential for residual natural loading in latex composites, different types of surface modification techniques have been applied. This review discusses the preparation and characterization of the modified waste natural fillers for latex-based composites. The potency of the waste natural filler for the latex-based composites was explored with a focus on the mechanical, thermal, biodegradability and filler-latex interaction. This review also offers an update on the possible application of the waste natural filler towards the biodegradability of the latex-based composites for a more sustainable future.
  2. Misman MA, Azura AR, Hamid ZA
    Carbohydr Polym, 2015 Sep 5;128:1-10.
    PMID: 26005134 DOI: 10.1016/j.carbpol.2015.04.004
    Starch-graft-acrylonitrile (ANS) is compounded with carboxylated nitrile butadiene rubber (XNBR) latex. The control XNBR and the ANS/XNBR latex films were prepared through a coagulant dipping process. The films were subjected to ageing and soil burial procedures. For the biodegradation experiment, the surface of the film was assessed after the 2nd, 4th and 8th week of soil burial. The ANS, XNBR, and ANS/XNBR colloidal stability were determined with a Malvern Zetasizer. For the dipped latex films, the mechanical, morphological and thermal properties were analyzed. The addition of ANS into the XNBR latex increased the stability of the colloidal dispersions, decreased the latex film tensile strength, but increased the elongation at break due to the bipolar interaction of the ANS and XNBR particles. The ANS/XNBR latex films aged faster than the control films while the morphological analysis showed the existence of a starch crystal region and the formation of microbial colonies on the surfaces of the films. Based on the TGA-DTA curves, a higher ΔT was observed for the ANS/XNBR latex films signifying high thermal energy needed for the film to thermally degrade.
  3. Raju G, Mas Haris MRH, Azura AR, Ahmed Mohamed Eid AM
    ACS Omega, 2020 Nov 10;5(44):28760-28766.
    PMID: 33195929 DOI: 10.1021/acsomega.0c04081
    The slow-release mechanism of copper into soil followed by soil biodegradation was studied using the chitosan (CTS)/epoxidized natural rubber (ENR) biocomposite. The biocomposite was prepared by homogenizing CTS in ENR50 (ENR with about 50% epoxy content) latex in the presence of curing agents and acetic acid. It was found that the adsorption property of the biocomposite was very much influenced by chitosan loading, where 20phrCTS-t-ENR biocomposite can absorb 76.31% of Cu(II) ions. The desorption study indicates that the copper (II) ion can be released at a very slow and control phase as proven by the kinetic study using zero-order, first-order, Higuchi, and Korsmeyer Peppas equations. The slow-release studies comply with the Higuchi square-root equation, indicating that the release process is diffusion-controlled. Results of desorption and biodegradation process suggest that this biocomposite has the potential use of being a slow-release matrix in the field of agriculture.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links