Displaying all 4 publications

Abstract:
Sort:
  1. Mahfoud F, Mancia G, Schmieder RE, Ruilope L, Narkiewicz K, Schlaich M, et al.
    J Am Coll Cardiol, 2022 Nov 15;80(20):1871-1880.
    PMID: 36357087 DOI: 10.1016/j.jacc.2022.08.802
    BACKGROUND: Renal denervation (RDN) has been shown to lower blood pressure (BP), but its effects on cardiovascular events have only been preliminarily evaluated. Time in therapeutic range (TTR) of BP is associated with cardiovascular events.

    OBJECTIVES: This study sought to assess the impact of catheter-based RDN on TTR and its association with cardiovascular outcomes in the GSR (Global SYMPLICITY Registry).

    METHODS: Patients with uncontrolled hypertension were enrolled and treated with radiofrequency RDN. Office and ambulatory systolic blood pressure (OSBP and ASBP) were measured at 3, 6, 12, 24, and 36 months postprocedure and used to derive TTR. TTR through 6 months was assessed as a predictor of cardiovascular events from 6 to 36 months using a Cox proportional hazard regression model.

    RESULTS: As of March 1, 2022, 3,077 patients were enrolled: 42.2% were female; mean age was 60.5 ± 12.2 years; baseline OSBP was 165.6 ± 24.8 mm Hg; and baseline ASBP was 154.3 ± 18.7 mm Hg. Patients were prescribed 4.9 ± 1.7 antihypertensive medications at baseline and 4.8 ± 1.9 at 36 months. At 36 months, mean changes were -16.7 ± 28.4 and -9.0 ± 20.2 mm Hg for OSBP and ASBP, respectively. TTR through 6 months was 30.6%. A 10% increase in TTR after RDN through 6 months was associated with significant risk reductions from 6 to 36 months of 15% for major adverse cardiovascular events (P < 0.001), 11% cardiovascular death (P = 0.010), 15% myocardial infarction (P = 0.023), and 23% stroke (P < 0.001).

    CONCLUSIONS: There were sustained BP reductions and higher TTR through 36 months after RDN. A 10% increase in TTR through 6 months was associated with significant risk reductions in major cardiovascular events from 6 to 36 months. (Global SYMPLICITY Registry [GSR] DEFINE; NCT01534299).

  2. Roll U, Feldman A, Novosolov M, Allison A, Bauer AM, Bernard R, et al.
    Nat Ecol Evol, 2017 11;1(11):1785.
    PMID: 29046563 DOI: 10.1038/s41559-017-0380-7
    In this Article originally published, owing to a technical error, the author 'Laurent Chirio' was mistakenly designated as a corresponding author in the HTML version, the PDF was correct. This error has now been corrected in the HTML version. Further, in Supplementary Table 3, the authors misspelt the surname of 'Danny Meirte'; this file has now been replaced.
  3. Roll U, Feldman A, Novosolov M, Allison A, Bauer AM, Bernard R, et al.
    Nat Ecol Evol, 2017 Nov;1(11):1677-1682.
    PMID: 28993667 DOI: 10.1038/s41559-017-0332-2
    The distributions of amphibians, birds and mammals have underpinned global and local conservation priorities, and have been fundamental to our understanding of the determinants of global biodiversity. In contrast, the global distributions of reptiles, representing a third of terrestrial vertebrate diversity, have been unavailable. This prevented the incorporation of reptiles into conservation planning and biased our understanding of the underlying processes governing global vertebrate biodiversity. Here, we present and analyse the global distribution of 10,064 reptile species (99% of extant terrestrial species). We show that richness patterns of the other three tetrapod classes are good spatial surrogates for species richness of all reptiles combined and of snakes, but characterize diversity patterns of lizards and turtles poorly. Hotspots of total and endemic lizard richness overlap very little with those of other taxa. Moreover, existing protected areas, sites of biodiversity significance and global conservation schemes represent birds and mammals better than reptiles. We show that additional conservation actions are needed to effectively protect reptiles, particularly lizards and turtles. Adding reptile knowledge to a global complementarity conservation priority scheme identifies many locations that consequently become important. Notably, investing resources in some of the world's arid, grassland and savannah habitats might be necessary to represent all terrestrial vertebrates efficiently.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links