Displaying all 3 publications

Abstract:
Sort:
  1. Kawamura, Gunzo, Bagarinao, Teodora Uy, Yong, Annita Seok Kian
    MyJurnal
    Information on the sensory basis of shrimp feeding provides the means for assessment of the effectiveness of food items in terms of smell, taste, size, and colour. This chapter summarizes information about the sensory basis of the feeding behaviour of the giant freshwater prawn (Macrobrachium rosenbergii) and the marine whiteleg shrimp (Litopenaeus vannamei). Existing literature on these shrimp species and other decapod crustaceans is reviewed, and unpublished experiments using the selective sensory ablation technique to determine the involvement of vision, chemoreception, and touch sense in the feeding behavior of the juveniles of M. rosenbergii and L. vannamei are also described. To determine the role of vision in feeding, the eyes of the juveniles were painted over (deprived of vision) with white manicure and their feeding response to commercial pellets was compared with those with untreated eyes. The untreated eyed juveniles detected and approached a feed pellet right away, but the specimens blinded by the coating detected a pellet only after random accidental touch with the walking legs while roaming on the aquarium bottom. Juveniles that had learned to feed on pellets showed food search and manipulation responses to a pellet-like pebble without smell and taste. The early larvae (zoeae) of M. rosenbergii already have colour vision (that likely persists through life) and colour preference for blue and white. The adults of L. vannamei discriminated a blue-colored well among seven grey wells in a palette, also showing colour vision in this shrimp. A behavioural experiment with dyed prawn flesh showed that L. vannamei has innate color preference for yellow food over black, red, green, and blue food regardless of the background colours of the aquarium bottom. To disrupt chemoreception, the juveniles of both the species were abruptly transferred to water of drastically different salinity and the osmotic ablation destroyed the chemosensitive sensilla. The osmotically ablated juveniles approached a pellet right away but failed to ingest it; they had learned the visual cue and texture of the pellets and recognized them by vision and tactile sense. To determine the role of sensory appendages in feeding of L. vannamei juveniles, the antennal flagella, antennular flagella, and the pincers of the pereiopods were ablated. The ablated juveniles roamed the bottom, touched a pellet at random, grabbed it with the maxillipeds, and ingested it. Subsequently they learned to lower the head, actively swim forward, sweep the bottom with the maxillipeds, detect a pellet, and ingest it—thus indicating a plasticity in feeding behaviour in L. vannamei.
  2. Kawamura, Gunzo, Bagarinao, Teodora Uy, Anraku, Kazuhiko, Okamoto, Masaru
    MyJurnal
    We hypothesized that fish with red-sensitive retina would be stressed by red light and thus inhibited in somatic growth. Red sea bream (Pagrus major) juveniles (total length =3 cm) with red-sensitive retina were chosen to test this hypothesis. We examined the effect of different color lights (red with λmax 605 nm; green with λmax 540 nm; blue with λmax at 435 nm; and white with full spectrum) on unfed juveniles in laboratory tanks. Stress level was measured by the plasma cortisol and glucose concentrations, and nutritional status by muscle RNA/DNA ratio. Under red light, plasma cortisol and glucose, and muscle RNA/DNA were significantly higher than under green, blue, or white light. Our hypothesis was partly supported by previous findings on the effects of the color environment and spectral sensitivity of reared fishes. However, the levels of cortisol, glucose, and RNA/DNA in this study were low compared to published values. It seems that hatchery-bred juvenile red sea bream have adapted to red-rich surface light and are able to cope with the stress of living in surface floating cages which is so different from their deep-water habitats.
  3. Kawamura, Gunzo, Bagarinao, Teodora Uy, Nur Syallinaz Seniman, Yong, Annita Seok-Kian, Lim, Leong-Seng
    MyJurnal
    Combining feeding appendage morphology and behavioural observation of the motion pattern of the feeding appendages clarified many aspects underlying the feeding processes of the giant freshwater prawn (Macrobrachium rosenbergii) and the marine whiteleg shrimp (Litopenaeus vannamei) in aquaria. The food intake behaviour was video recorded during eating pellet food, and pieces of fresh squid and fish. While M. rosenbergiitook pellet one by one, L. vannamei picked up many pellets at one time and held them at the mouth with the 3rd maxilliped endopods and the 1st walking legs. Both species used the right chelate walking legs rather than the left walking legs to pick up the food. The 3rd walking legs of L. vannameiwere longest and heaviest among the chelate walking legs but their major role was not for feeding but for feeding contests often in the form of aggression. While M. rosenbergii easily crunched pellets by the mandibles, L. vannamei did not crunch pellets due to the softer and not so strong mandibles and frequently spat out them, indicating that the present hard pellets are not suitable for L. vannamei. Both the species kept a piece of elastic fresh squid or fish flesh at the mouth and tore the food into small pieces with the help of repeated pulling down motion of the 3rd maxilliped endopods. However, the mandible teeth of the two spices were not sharp enough to gnaw off the fibrous muscle in one bite. The 2nd and 3rd maxilliped endopods were used for holding food at the mouth and did not contribute to mastication of food. The 2nd and 3rd maxilliped exopods exhibited the horizontal fanning motion, which caused a unidirectional water flow moving backwards in the gill chamber (visualized with milk). The maxilliped exopods were found to contribute not to feeding but ventilation. Based on the results obtained, development of softer pellets was recommended for L. vannamei.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links