Displaying all 4 publications

Abstract:
Sort:
  1. Baharuddin MY, Salleh ShH, Zulkifly AH, Lee MH, Mohd Noor A
    Biomed Res Int, 2014;2014:692328.
    PMID: 25025068 DOI: 10.1155/2014/692328
    A morphology study was essential to the development of the cementless femoral stem because accurate dimensions for both the periosteal and endosteal canal ensure primary fixation stability for the stem, bone interface, and prevent stress shielding at the calcar region. This paper focused on a three-dimensional femoral model for Asian patients that applied preoperative planning and femoral stem design. We measured various femoral parameters such as the femoral head offset, collodiaphyseal angle, bowing angle, anteversion, and medullary canal diameters from the osteotomy level to 150 mm below the osteotomy level to determine the position of the isthmus. Other indices and ratios for the endosteal canal, metaphyseal, and flares were computed and examined. The results showed that Asian femurs are smaller than Western femurs, except in the metaphyseal region. The canal flare index (CFI) was poorly correlated (r < 0.50) to the metaphyseal canal flare index (MCFI), but correlated well (r = 0.66) with the corticomedullary index (CMI). The diversity of the femoral size, particularly in the metaphyseal region, allows for proper femoral stem design for Asian patients, improves osseointegration, and prolongs the life of the implant.
  2. Baharuddin MY, Salleh ShH, Hamedi M, Zulkifly AH, Lee MH, Mohd Noor A, et al.
    Biomed Res Int, 2014;2014:478248.
    PMID: 24800230 DOI: 10.1155/2014/478248
    Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing.
  3. Baharuddin MY, Salleh ShH, Zulkifly AH, Lee MH, Noor AM, A Harris AR, et al.
    PMID: 24484753 DOI: 10.1186/1471-2474-15-30
    Minimal available information concerning hip morphology is the motivation for several researchers to study the difference between Asian and Western populations. Current use of a universal hip stem of variable size is not the best option for all femur types. This present study proposed a new design process of the cementless femoral stem using a three dimensional model which provided more information and accurate analysis compared to conventional methods.
  4. Baharuddin MY, Salleh ShH, Suhasril AA, Zulkifly AH, Lee MH, Omar MA, et al.
    Artif Organs, 2014 Jul;38(7):603-8.
    PMID: 24404766 DOI: 10.1111/aor.12222
    Total hip arthroplasty is a flourishing orthopedic surgery, generating billions of dollars of revenue. The cost associated with the fabrication of implants has been increasing year by year, and this phenomenon has burdened the patient with extra charges. Consequently, this study will focus on designing an accurate implant via implementing the reverse engineering of three-dimensional morphological study based on a particular population. By using finite element analysis, this study will assist to predict the outcome and could become a useful tool for preclinical testing of newly designed implants. A prototype is then fabricated using 316L stainless steel by applying investment casting techniques that reduce manufacturing cost without jeopardizing implant quality. The finite element analysis showed that the maximum von Mises stress was 66.88 MPa proximally with a safety factor of 2.39 against endosteal fracture, and micromotion was 4.73 μm, which promotes osseointegration. This method offers a fabrication process of cementless femoral stems with lower cost, subsequently helping patients, particularly those from nondeveloped countries.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links