A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 Te at the CERN LHC, corresponding to an integrated luminosity of 137 fb - 1 collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on the model, the combined result excludes a top squark mass up to 1325 Ge for a massless neutralino, and a neutralino mass up to 700 Ge for a top squark mass of 1150 Ge . Top squarks with masses from 145 to 295 Ge , for neutralino masses from 0 to 100 Ge , with a mass difference between the top squark and the neutralino in a window of 30 Ge around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 Ge .
The measurement of the luminosity recorded by the CMS detector installed at LHC interaction point 5, using proton-proton collisions at s = 13 TeV in 2015 and 2016, is reported. The absolute luminosity scale is measured for individual bunch crossings using beam-separation scans (the van der Meer method), with a relative precision of 1.3 and 1.0% in 2015 and 2016, respectively. The dominant sources of uncertainty are related to residual differences between the measured beam positions and the ones provided by the operational settings of the LHC magnets, the factorizability of the proton bunch spatial density functions in the coordinates transverse to the beam direction, and the modeling of the effect of electromagnetic interactions among protons in the colliding bunches. When applying the van der Meer calibration to the entire run periods, the integrated luminosities when CMS was fully operational are 2.27 and 36.3 fb - 1 in 2015 and 2016, with a relative precision of 1.6 and 1.2%, respectively. These are among the most precise luminosity measurements at bunched-beam hadron colliders.
The production of Z bosons associated with jets is measured in pp collisions at s=13TeV with data recorded with the CMS experiment at the LHC corresponding to an integrated luminosity of 36.3fb-1. The multiplicity of jets with transverse momentum pT>30GeV is measured for different regions of the Z boson's pT(Z), from lower than 10GeV to higher than 100GeV. The azimuthal correlation Δϕ between the Z boson and the leading jet, as well as the correlations between the two leading jets are measured in three regions of pT(Z). The measurements are compared with several predictions at leading and next-to-leading orders, interfaced with parton showers. Predictions based on transverse-momentum dependent parton distributions and corresponding parton showers give a good description of the measurement in the regions where multiple parton interactions and higher jet multiplicities are not important. The effects of multiple parton interactions are shown to be important to correctly describe the measured spectra in the low pT(Z) regions.
The double differential cross sections of the Drell-Yan lepton pair (ℓ+ℓ-, dielectron or dimuon) production are measured as functions of the invariant mass mℓℓ, transverse momentum pT(ℓℓ), and φη∗. The φη∗ observable, derived from angular measurements of the leptons and highly correlated with pT(ℓℓ), is used to probe the low-pT(ℓℓ) region in a complementary way. Dilepton masses up to 1TeV are investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various mℓℓ ranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3fb-1 of proton-proton collisions recorded with the CMS detector at the LHC at a centre-of-mass energy of 13TeV. Measurements are compared with predictions based on perturbative quantum chromodynamics, including soft-gluon resummation.
New sets of parameter tunes for two of the colour reconnection models, quantum chromodynamics-inspired and gluon-move, implemented in the pythia 8 event generator, are obtained based on the default CMS pythia 8 underlying-event tune, CP5. Measurements sensitive to the underlying event performed by the CMS experiment at centre-of-mass energies s=7 and 13TeV, and by the CDF experiment at 1.96TeV are used to constrain the parameters of colour reconnection models and multiple-parton interactions simultaneously. The new colour reconnection tunes are compared with various measurements at 1.96, 7, 8, and 13TeV including measurements of the underlying-event, strange-particle multiplicities, jet substructure observables, jet shapes, and colour flow in top quark pair (tt¯) events. The new tunes are also used to estimate the uncertainty related to colour reconnection modelling in the top quark mass measurement using the decay products of tt¯ events in the semileptonic channel at 13TeV.