Carboxymethyl chitin (CMChit) has the potential to be used as a solid polymer electrolyte (SPE) based on its ionic conductivity value of the order of 10-6 S·cm-1 in self-standing membranes. In controlled humidity of 65RH%, carboxymethyl chitin based membrane blended with 1-Butyl-3-methylimidazolium acetate (BMIM[Ac]) ionic liquid (IL) (40 wt%) showed a threshold value of ionic conductivity in the order of 10-4 S·cm-1 and electrochemical stability was up to 2.93 V. The effects of the relative humidity and ionic liquid weight fraction on the ionic conductivity and structural changes were investigated in detail. Furthermore, the X-ray diffraction (XRD) diffractogram indicated a clear reduction of crystallinity of the CMChit. The Field-emission scanning electron microscopy (FESEM) observation of the cross-sections confirmed the homogeneity of the prepared blend. This electrolyte was tested in symmetric cells based on Zn//SPE//Zn and showed good reversibility and potential for application in proton-conducting batteries.