Displaying all 2 publications

Abstract:
Sort:
  1. Al-Ashwal A, Alsagheir A, Al Dubayee M, Al-Khnifsawi M, Al-Sarraf A, Awan Z, et al.
    J Clin Lipidol, 2023 Dec 15.
    PMID: 38158247 DOI: 10.1016/j.jacl.2023.12.003
    Homozygous familial hypercholesterolaemia (HoFH) is a severe form of FH in which inheritance of two defective or null mutations in genes associated with metabolism of low-density lipoprotein cholesterol (LDL-C) results in extremely high LDL-C, premature atherosclerotic cardiovascular disease (ASCVD) and mortality. Treatment of HoFH comprises a multi-modal approach of statins, ezetimibe, lipoprotein apheresis; and inhibitors of proprotein convertase subtilisin/kexin type, angiopoietin-like protein 3 (ANGPTL3) and microsomal triglyceride transfer protein. These treatments are generally costly, and patients also often require treatment for ASCVD consequent to HoFH. Therefore, in the interests of both economics and preservation of life, disease prevention via genetic screening and counselling is rapidly becoming a key element in the overall management of HoFH. Guidelines are available to assist diagnosis and treatment of HoFH; however, while advancements have been made in the management of the disease, there has been little systematic attention paid to prevention. Additionally, the Middle East/North Africa (MENA) region has a higher prevalence of HoFH than most other regions - chiefly due to consanguinity. This has led to the establishment of regional lipid clinics and awareness programs that have thrown education and awareness of HoFH into sharp focus. Incorporation of principles of prevention, education, awareness, and data from real-world use of existing therapeutics will significantly enhance the effectiveness of future guidelines for the management of HoFH, particularly in the MENA region.
  2. Maddirevula S, AlZahrani F, Anazi S, Almureikhi M, Ben-Omran T, Abdel-Salam GMH, et al.
    Genet Med, 2018 01;20(1):64-68.
    PMID: 28640246 DOI: 10.1038/gim.2017.78
    PurposeGenome-wide association studies (GWAS) have been instrumental to our understanding of the genetic risk determinants of complex traits. A common challenge in GWAS is the interpretation of signals, which are usually attributed to the genes closest to the polymorphic markers that display the strongest statistical association. Naturally occurring complete loss of function (knockout) of these genes in humans can inform GWAS interpretation by unmasking their deficiency state in a clinical context.MethodsWe exploited the unique population structure of Saudi Arabia to identify novel knockout events in genes previously highlighted in GWAS using combined autozygome/exome analysis.ResultsWe report five families with homozygous truncating mutations in genes that had only been linked to human disease through GWAS. The phenotypes observed in the natural knockouts for these genes (TRAF3IP2, FRMD3, RSRC1, BTBD9, and PXDNL) range from consistent with, to unrelated to, the previously reported GWAS phenotype.ConclusionWe expand the role of human knockouts in the medical annotation of the human genome, and show their potential value in informing the interpretation of GWAS of complex traits.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links