OBJECTIVE: In this work, we aimed to develop a practical, structured approach to identify narratives in public online conversations on social media platforms where concerns or confusion exist or where narratives are gaining traction, thus providing actionable data to help the WHO prioritize its response efforts to address the COVID-19 infodemic.
METHODS: We developed a taxonomy to filter global public conversations in English and French related to COVID-19 on social media into 5 categories with 35 subcategories. The taxonomy and its implementation were validated for retrieval precision and recall, and they were reviewed and adapted as language about the pandemic in online conversations changed over time. The aggregated data for each subcategory were analyzed on a weekly basis by volume, velocity, and presence of questions to detect signals of information voids with potential for confusion or where mis- or disinformation may thrive. A human analyst reviewed and identified potential information voids and sources of confusion, and quantitative data were used to provide insights on emerging narratives, influencers, and public reactions to COVID-19-related topics.
RESULTS: A COVID-19 public health social listening taxonomy was developed, validated, and applied to filter relevant content for more focused analysis. A weekly analysis of public online conversations since March 23, 2020, enabled quantification of shifting interests in public health-related topics concerning the pandemic, and the analysis demonstrated recurring voids of verified health information. This approach therefore focuses on the detection of infodemic signals to generate actionable insights to rapidly inform decision-making for a more targeted and adaptive response, including risk communication.
CONCLUSIONS: This approach has been successfully applied to identify and analyze infodemic signals, particularly information voids, to inform the COVID-19 pandemic response. More broadly, the results have demonstrated the importance of ongoing monitoring and analysis of public online conversations, as information voids frequently recur and narratives shift over time. The approach is being piloted in individual countries and WHO regions to generate localized insights and actions; meanwhile, a pilot of an artificial intelligence-based social listening platform is using this taxonomy to aggregate and compare online conversations across 20 countries. Beyond the COVID-19 pandemic, the taxonomy and methodology may be adapted for fast deployment in future public health events, and they could form the basis of a routine social listening program for health preparedness and response planning.
Objective: The World Health Organization organized the first global infodemiology conference, entirely online, during June and July 2020, with a follow-up process from August to October 2020, to review current multidisciplinary evidence, interventions, and practices that can be applied to the COVID-19 infodemic response. This resulted in the creation of a public health research agenda for managing infodemics.
Methods: As part of the conference, a structured expert judgment synthesis method was used to formulate a public health research agenda. A total of 110 participants represented diverse scientific disciplines from over 35 countries and global public health implementing partners. The conference used a laddered discussion sprint methodology by rotating participant teams, and a managed follow-up process was used to assemble a research agenda based on the discussion and structured expert feedback. This resulted in a five-workstream frame of the research agenda for infodemic management and 166 suggested research questions. The participants then ranked the questions for feasibility and expected public health impact. The expert consensus was summarized in a public health research agenda that included a list of priority research questions.
Results: The public health research agenda for infodemic management has five workstreams: (1) measuring and continuously monitoring the impact of infodemics during health emergencies; (2) detecting signals and understanding the spread and risk of infodemics; (3) responding and deploying interventions that mitigate and protect against infodemics and their harmful effects; (4) evaluating infodemic interventions and strengthening the resilience of individuals and communities to infodemics; and (5) promoting the development, adaptation, and application of interventions and toolkits for infodemic management. Each workstream identifies research questions and highlights 49 high priority research questions.
Conclusions: Public health authorities need to develop, validate, implement, and adapt tools and interventions for managing infodemics in acute public health events in ways that are appropriate for their countries and contexts. Infodemiology provides a scientific foundation to make this possible. This research agenda proposes a structured framework for targeted investment for the scientific community, policy makers, implementing organizations, and other stakeholders to consider.