Displaying all 2 publications

Abstract:
Sort:
  1. Boey JY, Mohamad L, Khok YS, Tay GS, Baidurah S
    Polymers (Basel), 2021 May 12;13(10).
    PMID: 34065779 DOI: 10.3390/polym13101544
    Overconsumption of plastic goods and improper handling of petroleum-derived plastic waste have brought a plethora of negative impacts to the environment, ecosystem and human health due to its recalcitrance to degradation. These drawbacks become the main driving force behind finding biopolymers with the degradable properties. With the advancement in biopolymer research, polyhydroxyalkanoate (PHA) and poly(lacyic acid) (PLA) and its composites have been alluded to as a potential alternative to replace the petrochemical counterpart. This review highlights the current synthesis process and application of PHAs and PLA and its composites for food packaging materials and coatings. These biopolymers can be further ameliorated to enhance their applicability and are discussed by including the current commercially available packaging products. Factors influencing biodegradation are outlined in the latter part of this review. The main aim of this review article is to organize the scattered available information on various aspects of PHAs and PLA, and its composites for packaging application purposes. It is evident from a literature survey of about 140 recently published papers from the past 15 years that PLA and PHA show excellent physical properties as potential food packaging materials.
  2. Boey JY, Kong U, Lee CK, Lim GK, Oo CW, Tan CK, et al.
    Int J Biol Macromol, 2024 May;266(Pt 2):131079.
    PMID: 38537860 DOI: 10.1016/j.ijbiomac.2024.131079
    This study investigates the effects of SCG embedded into biodegradable polymer blends and aimed to formulate and characterise biomass-reinforced biocomposites using spent coffee ground (SCG) as reinforcement in PHB/PLA polymer blend. The effect of SCG filler loading and varying PHB/PLA ratios on the tensile properties and morphological characteristics of the biocomposites were examined. The results indicated that tensile properties reduction could be due to its incompatibility with the PHB/PLA matrixSCG aggregation at 40 wt% content resulted in higher void formation compared to lower content at 10 wt%. A PHB/PLA ratio of 50/50 with SCG loading 20 wt% was chosen for biocomposites with treated SCG. Biological treatment of SCG using Phanerochaete chrysosporium CK01 and Aspergillus niger DWA8 indicated P. chrysosporium CK01 necessitated a higher moisture content for optimum growth and enzyme production, whereas the optimal conditions for enzyme production (50-55 %, w/w) differed from those promoting A. niger DWA8 growth (40 %, w/w). SEM micrographs highlighted uniform distribution and effective wetting of treated SCG, resulting in improvements of tensile strength and modulus of biocomposites, respectively. The study demonstrated the effectiveness of sustainable fungal treatment in enhancing the interfacial adhesion between treated SCG and the PHB/PLA matrix.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links