Lyotropic nonlamellar liquid crystalline nanoparticles (NPs) (LCN), such as cubosomes and hexosomes, are useful tools for applications in drug delivery because of their unique structural properties. LCNs are highly versatile carriers that can be applied for use with topical, oral, and intravenous treatments. In recent years, significant research has focused on improving their preparation and characterization, including controlling drug release and enhancing the efficacy of loaded bioactive molecules. Nevertheless, the clinical translation of LCN-based carriers has been slow. In this review, we highlight recent advances and challenges in the development and application of LCN, providing examples of their topical, oral, and intravenous drug delivery applications, and discussing translational obstacles to LCN as a NP technology.
Gold nanoparticles (AuNPs) have garnered much attention as contrast agents for computerized tomography (CT) because of their facile synthesis and surface functionalization, in addition to their significant X-ray attenuation and minimal cytotoxicity. Cell labeling using AuNPs and tracking of the labeled cells using CT has become a time-efficient and cost-effective method. Actively targeted AuNPs can enhance CT contrast and sensitivity, and further reduce the radiation dosage needed during CT imaging. In this review, we summarize the state-of-the-art use of AuNPs in CT for cell tracking, including the precautionary steps necessary for their use and the difficulty in translating the process into clinical use.
Smart nanocarriers obtained from bacteria and viruses offer excellent biomimetic properties which has led to significant research into the creation of advanced biomimetic materials. Their versatile biomimicry has application as biosensors, biomedical scaffolds, immobilization, diagnostics, and targeted or personalized treatments. The inherent natural traits of biomimetic and bioinspired bacteria- and virus-derived nanovesicles show potential for their use in clinical vaccines and novel therapeutic drug delivery systems. The past few decades have seen significant progress in the bioengineering of bacteria and viruses to manipulate and enhance their therapeutic benefits. From a pharmaceutical perspective, biomimetics enable the safe integration of naturally occurring bacteria and virus particles to achieve high, stable rates of cellular transfection/infection and prolonged circulation times. In addition, biomimetic technologies can overcome safety concerns associated with live-attenuated and inactivated whole bacteria or viruses. In this review, we provide an update on the utilization of bacterial and viral particles as drug delivery systems, theranostic carriers, and vaccine/immunomodulation modalities.